Adsorption and Desorption Study of Locally Available BOF Sludge to Remove Metal Ions from Aqueous Solutions

2019 ◽  
Vol 394 ◽  
pp. 33-38
Author(s):  
Lucia Rozumová

Coarse BOF sludge is a waste originating from steelmaking production. The major phaseof this waste is zinc ferrite. BOF sludge for this study was obtained from the metallurgical industryfrom a process of gas treatment in an oxygen converter. The sorption of cobalt, manganese and nickelions was investigated in the sample of the deposited sludge in a batch of experiments. The sorptionprocess was evaluated using three types of isotherm models. The sludge sample was alkaline andconsisted primarily of X-ray amorphous compounds and crystalline Fe oxides. The adsorptionprocess showed that a high removal efficiency was achieved at a lower initial concentration of metalions. Moreover, the equilibrium of the sorption process was achieved after 72 hours. Subsequently,the desorption of these adsorbed ions was investigated. The results of this study indicate that theapplication of metallurgical waste as a sorbent is highly effective for the treatment of wastewater.

Processes ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 166 ◽  
Author(s):  
George Kyzas ◽  
Evi Christodoulou ◽  
Dimitrios Bikiaris

Over the last several years, the trend of researchers has been to use some very low-cost materials as adsorbents. For this purpose, some already commercially used bast fibers were selected as potential adsorbent materials to remove basic dye from synthetic effluents. The adsorption of basic yellow 37 dye was studied using three different bast fibers under the names of flax, ramie, and kenaf. Their morphological structure was examined using several techniques such as scanning electron microscopy (SEM), crystallinity, X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR), as well as those characterizations being a useful tool to propose a mechanism of the whole adsorption process. The adsorption evaluation was achieved by studying at first the pH (12) and temperature effects (25–55 °C). Two isotherm models (Langmuir and Freundlich) were also applied to the experimental equilibrium data revealing the superiority of ramie fibers (327, 435, and 460 mg·g−1 (25 °C) for kenaf, flax, and ramie, respectively). The crucial adsorbent’s dosage was found to be 0.1 g per litre for all fibers, while the completed desorption study (eluant’s pH and reuse cycles) also confirmed the strong potential of these kinds of fibers as adsorbents. The latter may be attributed to the cellulosic content.


2014 ◽  
Vol 16 (4) ◽  
pp. 597-608 ◽  

<div> <p>Removal of Fe(II) and Mn(II) ions from aqueous solution by fungal biosorbent <em>Aspergillus sp. TU-GM14</em>immobilized on <em>Detarium microcarpum</em> matrix was investigated in this study. Effects of biosorption parameters pH, biosorbent concentration, bead size and equilibrium time on Fe(II) and Mn(II) ions sorption were also determined. Equilibrium was attained within in 3 hours while optimum Fe(II) and Mn(II) ions removal was observed at pH 6, 8 mm bead size, 2 g l<sup>-1</sup> spore load respectively. Adsorption capacity was described using Langmuir, Freundlich and BET isotherm models. The experimental data fitted best to the Freundlich model (<em>R</em><sup>2</sup> 0.992 and 0.996 for Mn(II) and Fe(II) respectively). Favourable surface sorption process was described by Langmuir isotherm for both metals (<em>Q</em><sub>max </sub>34 and 14 mg g<sup>-1</sup> for Mn(II) and Fe(II) ions) while the BET isotherm constant, <em>B</em>, described high metals sorption beyond the biosorbent surface in a multi-layer sorption process (4.8 and 9.0 for Mn(II) and Fe(II)&nbsp; respectively). Results of the study showed that <em>Aspergillus sp. TU-GM14 </em>biosorbent can remove large quantities of Fe(II) and Mn(II) ions from solution in both surface and multi-layer sorption process with <em>Detarium microcarpum</em> acting as a cheap immobilization matrix.</p> </div> <p>&nbsp;</p>


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 63
Author(s):  
Maria Harja ◽  
Gabriela Buema ◽  
Nicoleta Lupu ◽  
Horia Chiriac ◽  
Dumitru Daniel Herea ◽  
...  

Fly ash/magnetite material was used for the adsorption of copper ions from synthetic wastewater. The obtained material was characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) surface area, and vibrating sample magnetometer (VSM). Batch adsorption experiments were employed in order to investigate the effects of adsorbent dose, initial Cu (II) concentration and contact time over adsorption efficiency. The experimental isotherms were modeled using Langmuir (four types of its linearization), Freundlich, Temkin, and Harkins–Jura isotherm models. The fits of the results are estimated according to the Langmuir isotherm, with a maximum adsorption capacity of 17.39 mg/g. The pseudo-second-order model was able to describe kinetic results. The data obtained throughout the study prove that this novel material represents a potential low-cost adsorbent for copper adsorption with improved adsorption capacity and magnetic separation capability compared with raw fly ash.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Klaiani B. Fontana ◽  
Giane Gonçalves Lenzi ◽  
Erica R. L. R. Watanabe ◽  
Ervin Kaminski Lenzi ◽  
Juliana A. M. T. Pietrobelli ◽  
...  

The removal of Pb(II) from water by biosorption processes onto malt bagasse was investigated and the kinetic and thermodynamic parameters were obtained; additionally a diffusion modeling was proposed. The characterization of malt bagasse was performed by FTIR and SEM/EDS. The experiments were conducted in batch system and an experimental design based response surface methodology was applied for agitation speed and pH optimization. The kinetics of biosorption followed pseudo-second-order model and the temperature of the process affected the biosorption capacity. Isotherm models of Langmuir, Freundlich, and Elovich were applied and the Langmuir model showed better fit and the estimated biosorption capacity was 29.1 mg g−1. The negative values obtained for ΔG° and positive values of ΔH° confirm, respectively, the spontaneous and endothermic nature of the process. The diffusion modeling was performed based on experiments in the absence of agitation to investigate the influence of the biosorbent on the sorption process of Pb(II) ions.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
José María Rivera ◽  
Susana Rincón ◽  
Cherif Ben Youssef ◽  
Alejandro Zepeda

Mesoporous metal-organic framework-5 (MOF-5), with the composition Zn4O(BDC)3, showed a high capacity for the adsorptive removal of Pb(II) from 100% aqueous media. After the adsorption process, changes in both morphology and composition were detected using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) system, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. The experimental evidence showed that Zn(II) liberation from MOF-5 structure was provoked by the water effect demonstrating that Pb(II) removal is not due to ionic exchange with Zn. A kinetic study showed that Pb(II) removal was carried out in 30 min with a behavior of pseudo-second-order kinetic model. The experimental data on Pb(II) adsorption were adequately fit by both the Langmuir and BET isotherm models with maximum adsorption capacities of 658.5 and 412.7 mg/g, respectively, at pH 5 and 45°C. The results of this work demonstrate that the use of MOF-5 has great potential for applications in environmental protection, especially regarding the removal of the lead present in industrial wastewaters and tap waters.


2019 ◽  
Vol 233 (9) ◽  
pp. 1275-1292 ◽  
Author(s):  
Atta ul Haq ◽  
Muhammad Rasul Jan ◽  
Jasmin Shah ◽  
Maria Sadia ◽  
Muhammad Saeed

Abstract The presence of heavy metals in water causes serious problems and their treatment before incorporating into the water body is a challenge for researchers. The present study was conducted to compare the sorption study of Ni (II) using silica gel, amberlite IR-120 and sawdust of mulberry wood in batch system under the influence of pH, initial Ni (II) concentration and contact time. It was observed that sorption process was depending upon pH and maximum sorption was achieved at pH 7.0. Kinetic data were well fitted into pseudo-second order kinetic model due to high R2 values and closeness of experimental sorption capacity and calculated sorption capacity of pseudo-second order. Isotherms study showed that Langmuir is one of the most suitable choices to explain sorption data due to high R2 values. The monolayer sorption capacities of silica gel, amberlite IR-120 and sawdust were found to be 33.33, 25.19, and 33.67 mg g−1, respectively. Desorption study revealed that NaCl is one of the most appropriate desorbent. It may be concluded from this study that sawdust is a suitable sorbent due to low cost, abundant availability and recycling of the materials for further study.


2017 ◽  
Vol 76 (7) ◽  
pp. 1726-1738 ◽  
Author(s):  
Raluca Maria Hlihor ◽  
Mihaela Roşca ◽  
Teresa Tavares ◽  
Maria Gavrilescu

The aim of this paper was to establish the optimum parameters for the biosorption of Pb(II) by dead and living Arthrobacter viscosus biomass from aqueous solution. It was found that at an initial pH of 4 and 26 °C, the dead biomass was able to remove 97% of 100 mg/L Pb(II), while the living biomass removed 96% of 100 mg/L Pb(II) at an initial pH of 6 and 28 ± 2 °C. The results were modeled using various kinetic and isotherm models so as to find out the mechanism of Pb(II) removal by A. viscosus. The modeling results indicated that Pb(II) biosorption by A. viscosus was based on a chemical reaction and that sorption occurred at the functional groups on the surface of the biomass. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy coupled with energy dispersive X-ray microanalysis (SEM-EDX) analyses confirmed these findings. The suitability of living biomass as biosorbent in the form of a biofilm immobilized on star-shaped polyethylene supports was also demonstrated. The results suggest that the use of dead and living A. viscosus for the removal of Pb(II) from aqueous solutions is an effective alternative, considering that up to now it has only been used in the form of biofilms supported on different zeolites.


2016 ◽  
Vol 7 ◽  
pp. 1350-1360 ◽  
Author(s):  
Christian Suchomski ◽  
Ben Breitung ◽  
Ralf Witte ◽  
Michael Knapp ◽  
Sondes Bauer ◽  
...  

Magnetic nanocrystals with a narrow size distribution hold promise for many applications in different areas ranging from biomedicine to electronics and energy storage. Herein, the microwave-assisted sol–gel synthesis and thorough characterization of size-monodisperse zinc ferrite nanoparticles of spherical shape is reported. X-ray diffraction, 57Fe Mössbauer spectroscopy and X-ray photoelectron spectroscopy all show that the material is both chemically and phase-pure and adopts a partially inverted spinel structure with Fe3+ ions residing on tetrahedral and octahedral sites according to (Zn0.32Fe0.68)tet[Zn0.68Fe1.32]octO4±δ. Electron microscopy and direct-current magnetometry confirm the size uniformity of the nanocrystals, while frequency-dependent alternating-current magnetic susceptibility measurements indicate the presence of a superspin glass state with a freezing temperature of about 22 K. Furthermore, as demonstrated by galvanostatic charge–discharge tests and ex situ X-ray absorption near edge structure spectroscopy, the as-prepared zinc ferrite nanocrystals can be used as a high-capacity anode material for Li-ion batteries, showing little capacity fade – after activation – over hundreds of cycles. Overall, in addition to the good material characteristics, it is remarkable that the microwave-based synthetic route is simple, easily reproducible and scalable.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ayman Galal ◽  
Olfat Sadek ◽  
Moataz Soliman ◽  
Shaker Ebrahim ◽  
M. Anas

AbstractElectric arc furnace dust (EAFD) and waste pickle liquor (WPL); two major side products of the steel industry with negative environmental impact were used for the synthesis of nickel zinc ferrite (NZF); the important magnetic ceramic material of versatile industrial applications. The structural and magnetic properties of the prepared material were examined which showed good magnetic properties (high saturation magnetization and low coercivity) compared with those synthesized from pure reagents. In the applied process, nano sized nickel zinc ferrite (NZF) with a composition of Nix(Zn + impurities)1−xFe2O4 (where x = 0, 0.25, 0.5, 0.75 and impurities of manganese, magnesium, and calcium were prepared using zinc-containing electric arc furnace dust (EAFD) and waste pickle liquor (WPL). The chemical compositions of the prepared samples were determined using X-ray fluorescence (XRF) analysis. The optimum acetic acid concentration for EAFD treatment was found 2% v/v that decreased Ca content of EAFD by 70.6% without loss of Fe and Zn. The structural and morphological characterization was done by X-ray diffraction (XRD), Fourier transform infrared (FTIR) and Field Emission Scanning Electron Microscope (FESEM) to confirm the formation of Ni–Zn ferrite nanoparticles and estimate the particle sizes. The maximum saturation magnetization (Ms) of 73.89 emu/g was achieved at 0.5 Ni content and the minimum coercivity of 2.55 Oe was obtained at 0.25 Ni content.


2008 ◽  
Vol 26 (9) ◽  
pp. 693-703 ◽  
Author(s):  
P. Senthil Kumar ◽  
K. Kirthika ◽  
K. Sathish Kumar

The removal of hexavalent chromium, Cr(VI), from aqueous solutions under different conditions using an anion-exchange resin (AXR) as an adsorbent was investigated under batch conditions. Such studies indicated that the percentage adsorption decreased with increasing initial Cr(VI) concentration, with the maximum removal of such ions occurred at a pH value of ca. 2.0. Both the Langmuir and Freundlich isotherm models were capable of reproducing the isotherms obtained experimentally. The sorption process was rapid during the first 20 min with equilibrium being attained within 30 min. The process followed first-order kinetics. The results demonstrate that such anion-exchange resins can be used for the efficient removal of Cr(VI) ions from water and wastewater.


Sign in / Sign up

Export Citation Format

Share Document