Analysis of the Causes of Tube and Pipeline Blocking in Sulige Gas Field

2019 ◽  
Vol 394 ◽  
pp. 97-102
Author(s):  
Hang Juan Huang ◽  
Xi Cui ◽  
Yuan Zhang ◽  
Jian Xu ◽  
Yun Ma

A large number of blockage appeared in gas wells and pipeline appeared, which causedplugging, corrosion and the increasing of wellbore pressure difference, and seriously affect thenormal production of gas well of problems. In this paper, the water quality of produced water fromthe severe cases of single wells or pipeline water were analyzed, also include the composition ofblockage and core with the chemical volumetric method (CVM) , X-Ray Diffraction (XRD) and x-rayfluorescence (XFS) method. Meanwhile, the core powder was leached in simulated acid worksolution, and then the leaching solution was analyzed with CVM. The experimental results show thatThe produced water has high salinity, high contents of Ca2+, Ba2+ and Sr2+, low pH value, which leadto corrosion and scaling. The main components of the blockage are acid insoluble strontium sulfate(barium) scale or corrosion product or mixture of corrosion and CaCO3 scaling product. Ca2+, Ba2+and Sr2+ were easy to scale in wellbore or pipeline when they encountered other produced water fromdifferent formation. The Ca2+, Mg2+, Ba2+, Sr2+ and Fe 2+/3+ mainly derived from the dissolution offormation debris in formation water and working fluid (especially acidic working fluid) to reservoirrock, so the salinity of the produced water increased, and the trend of scaling and corrosion alsoincreased with the gas field development.

Author(s):  
Hualei Yi ◽  
Yun Hao ◽  
Xiaohong Zhou

Abstract For deepwater subsea tie-back gas field development, hydrate tends to be formed in deepwater subsea production system and gas pipeline due to high pressure and low temperature. Based on the gas field A development, this paper studies the selection of hydrate inhibitors and injection points, i.e. different injection points with different inhibitors. Transient and steady flow simulations are performed using the OLGA software widely used for multiphase flow pipeline study in the world. The produced water flow rate affects the hydrate inhibition in case of well opening, including cases of different times with different water temperatures. This paper presents the calculation of the maximum inhibitor injection rate in the subsea pipeline by taking the whole production years into consideration. The measures on hydrate remediation are taken by quickly relieving the subsea pipeline pressure from wellheads and the platform according to different hydrate locations. Now more and more deepwater gas fields are developed in South China Sea and around the world. The experience obtained from the gas field A development will benefit the hydrate inhibition for future deepwater gas field development.


2019 ◽  
Vol 814 ◽  
pp. 505-510
Author(s):  
Peng Chang ◽  
Rui Xue Shi ◽  
Li Wang ◽  
Wei Han ◽  
Cong Dan Ye ◽  
...  

A large amount of foreign matter appears in the Sulige gas well, causing blockage and corrosion of the pipeline, increasing the pressure difference in the wellbore and seriously affecting the normal production of the gas well. The gas wells with serious conditions mentioned above were selected to analyze the quality of single well produced water and the composition of blockage and core. Combined with the XRD analysis results of the cuttings, the long-term leaching experiments on the cuttings in different simulated solutions were carried out to study the sources of scaled ions in the gas wells. The experimental results showed that the extracted water from SD6-1 had high salinity and high content of scale ions Ca2+, Ba2+ and Sr2+;the main component of blockage is the acid insoluble strontium sulfate (barium) scale, and contains a small amount of corrosion products. The easily scalable Ca2+、Mg2+、Ba2+ and Sr2+ produced from the dissolution of the core in the formation water or working fluids, especially the acid erosion dissolves. According to the scaling mechanism, two kinds of Sr/Ba scale inhibitor were selected. The results showed that the barium II scale inhibitor performance is relatively good, and at the concentration of 40 mg/L, and the scale inhibition rate was more than 95%. The clogging of a single well can be reduced by adding a scale inhibitor.


2019 ◽  
Vol 23 (3) ◽  
pp. 66-71
Author(s):  
O.V. Savenok ◽  
L.V. Povarova ◽  
D.A. Berezovsky

A detailed analysis of the existing methods of cleaning and preparation of produced waters of oil and gas fields has been carried out and the most high-tech methods have been considered in detail. The prospects for the use of produced water as a technological reserve for increasing the efficiency of oil and gas field development are shown. It is noted that the methods of physico-chemical and mathematical modeling can be effectively used to improve the electromembrane technologies. At the same time, many theoretical questions require further, deeper study.


2021 ◽  
pp. 1-13
Author(s):  
Quan Qi ◽  
Liang Li ◽  
Liangyu Wei ◽  
Baoming Hu ◽  
Zheng Liu ◽  
...  

To provide a scientific basis for the resource utilization of chromium slag, this article studies the release law of hexavalent chromium in the aged calcium-free chromium slag. XRD (X-ray diffractometer) and MLA (Mineral Liberation Analyzer) were used to analyze the composition of the chromium slag; using sulfuric acid-nitric acid as the leaching solution, the release law of hexavalent chromium in chromium slag and the leaching kinetics were studied. The results show that main components of the chromium slag are magnesioferrite, chromite, hematite, hydrargillite, and spinel; chromium is mainly present in chromite and magnesioferrite; the leaching rate of hexavalent chromium increases with the increase of temperature or the decrease of pH. The analysis of leaching kinetics shows the leaching rate is controlled by the internal diffusion reaction, and the apparent activation energy is 11.93 kJ·mol–1. The chromium slag is aged in high temperature seasons, which is conducive to the precipitation of hexavalent chromium in the chromium slag, can increase the yield of chromate in the roasting kiln, and is conducive to resource utilization; chromium slag should be stored in order to prevent acid rain erosion which leads to environmental pollution risk (e.g. drinking water).


2012 ◽  
Vol 560-561 ◽  
pp. 494-498
Author(s):  
Yong Feng Chang ◽  
Chuan Lin Fan ◽  
Bin Chuan Li ◽  
Xiu Jing Zhai ◽  
Ting An Zhang

In this paper a novel method for selective leaching nickel from pre-reduced laterite ore at atmospheric pressure was reported. The reduced calcine was leached in thin acid liquor to liberate the nickel and iron together firstly. By properly controlling the leaching condition, the leached iron ion could hydrolyze as goethite precipitate and regenerate the acid consumed in the leaching procedure. Finally, the nickel is selectively extracted into the leaching solution. The main factors in the leaching process, such as reduction degree of the laterite ore, acidity of the leaching solution were investigated as influence on the nickel extraction. The test results showed that selectively leaching of nickel could be achieved with an extraction degree up to 90% by reducing most of the iron in the lateritic ore to wuestite and controlling the pH value of the leaching solution below 2.5.


2021 ◽  
Author(s):  
Vinicius Gasparetto ◽  
Thierry Hernalsteens ◽  
Joao Francisco Fleck Heck Britto ◽  
Joab Flavio Araujo Leao ◽  
Thiago Duarte Fonseca Dos Santos ◽  
...  

Abstract Buzios is a super-giant ultra-deep-water pre-salt oil and gas field located in the Santos Basin off Brazil's Southeastern coast. There are four production systems already installed in the field. Designed to use flexible pipes to tie back the production and injection wells to the FPSOs (Floating Production Storage and Offloading), these systems have taken advantage from several lessons learned in the previous projects installed by Petrobras in Santos Basin pre-salt areas since 2010. This knowledge, combined with advances in flexible pipe technology, use of long-term contracts and early engagement with suppliers, made it possible to optimize the field development, minimizing the risks and reducing the capital expenditure (CAPEX) initially planned. This paper presents the first four Buzios subsea system developments, highlighting some of the technological achievements applied in the field, as the first wide application of 8" Internal Diameter (ID) flexible production pipes for ultra-deep water, leading to faster ramp-ups and higher production flowrates. It describes how the supply chain strategy provided flexibility to cover the remaining project uncertainties, and reports the optimizations carried out in flexible riser systems and subsea layouts. The flexible risers, usually installed in lazy wave configurations at such water depths, were optimized reducing the total buoyancy necessary. For water injection and service lines, the buoyancy modules were completely removed, and thus the lines were installed in a free-hanging configuration. Riser configuration optimizations promoted a drop of around 25% on total riser CAPEX and allowed the riser anchor position to be placed closer to the floating production unit, promoting opportunities for reducing the subsea tieback lengths. Standardization of pipe specifications and the riser configurations allowed the projects to exchange the lines, increasing flexibility and avoiding riser interference in a scenario with multiple suppliers. Furthermore, Buzios was the first ultra-deep-water project to install a flexible line, riser, and flowline, with fully Controlled Annulus Solution (CAS). This system, developed by TechnipFMC, allows pipe integrity management from the topside, which reduces subsea inspections. As an outcome of the technological improvements and the optimizations applied to the Buzios subsea system, a vast reduction in subsea CAPEX it was achieved, with a swift production ramp-up.


Sign in / Sign up

Export Citation Format

Share Document