Characterization and Multi-Response Morphological Optimization for Preparation of Defect-Free Electrospun Nanofibers Using the Taguchi Method

Author(s):  
Jopeth M. Ramis ◽  
Bryan B. Pajarito ◽  
Custer C. Deocaris

The study presents a method on producing defect-free polyvinyl alcohol-gelatin (PVAG) nanofibers by considering multiple morphological characteristics of the produced nanofibers using the Taguchi method. Aside from minimizing the average fiber diameter, the method was also used to produce consistent, monodispersed PVAG nanofibers without the usual defects of beading and splattering. The experiments are performed considering the effect of polymer composition (PVAG ratio and solvent ratio of water, formic acid, and acetic acid H2O:FA:HAc) and process factors (tip-to-collector distance TCD and solution flow rate) on fiber morphology. Fiber morphology is measured in terms of 4 responses: average fiber diameter, standard deviation of fiber diameter, occurrence of beading, and occurrence of splattering. Results show that maximum overall desirability for electrospinning PVAG nanofibers at smallest average diameter and deviation (26.10 ± 9.88 nm) with chance of moderate beading and zero splattering is predicted at PVAG mass ratio of 6.5:3.5, H2O:FA:HAc solvent volume ratio of 4:4:2, TCD of 12.5 cm, and flow rate of 1 ml h-1. Results of confirmatory run agree with the predicted factor levels at maximum desirability, with average fiber diameter and standard deviation measured to be 26.95 ± 6.39 nm. PVAG nanofibers of the confirmatory run are also both bead-and splatter-free. Results suggest the application of Taguchi method can offer a robust and rapid approach in deriving the conditions for production of new and high-quality PVAG nanofibers for tissue engineering scaffolds.

2020 ◽  
Vol 846 ◽  
pp. 14-22
Author(s):  
Gianina Martha A. Tajanlangit ◽  
Leslie Joy L. Diaz

Iron-modified montmorillonite-filled polycaprolactone nanofiber mats were produced via electrospinning with varying applied voltage, flow rate, needle-tip-to-collector distance, and needle diameter. Scanning electron microscopy (SEM) was used to observe fiber morphology and characteristics. The effects of varying process parameters on various fiber characteristics were evaluated using a two-level fractional factorial experimental design. The effect of voltage on fiber diameter differed with varying flow rate. At 32 ml/hr, the average fiber diameter decreased from 518.38 nm ± 289.37 nm to 466.43 nm ± 312.36 nm when the voltage is increased. At 42 ml/hr the effect of voltage on fiber diameter was reversed. The average fiber diameter was also found to decrease from 516.03 nm ± 283.48 nm to 467.96 nm ± 318.07 nm with decreasing tip-to-collector distance at 32 mL/hr flow rate. The variation of the effect of the factors on fiber diameter was mainly due to a significant loss of material observed at 12 kV and 15 cm tip-to-collector distance. Bead formation was observed for all runs with more beads being formed at 12 kV applied voltage and 15 cm tip-to-collector distance. Spherical beads were observed at 12 kV and 15 cm tip-to-collector distance while spindle-like beads were present in nanofiber membranes spun at high voltage and at the combination of low voltage and low tip-to-collector distance. The parameter setting combination of 19 kV, 32 ml/hr flow rate, 10 cm tip-to-collector distance, and 0.514 mm needle diameter yielded the lowest fiber diameter with the least amount of beading and small bead size. Small fiber diameters and less beading provide larger surface area and more exposure of the Fe-MMT particles for more efficient adsorption.


NANO ◽  
2019 ◽  
Vol 14 (11) ◽  
pp. 1950139
Author(s):  
Saleh S. Abdelhady ◽  
Said H. Zoalfakar ◽  
M. A. Agwa ◽  
Ashraf A. Ali

This study is an attempt to optimize the electrospinning process to produce minimum Nylon 6,6 nanofibers by using Taguchi statistical technique. Nylon 6,6 solutions were prepared in a mixture of formic acid (FA) and Dichloromethane (DCM). Design of experiment by using Taguchi statistical technique was applied to determine the most important processing parameters influence on average fiber diameter of Nylon 6,6 nanofiber produced by electrospinning process. The effects of solvent/nylon and FA/DCM ratio on average fiber diameter were investigated. Optimal electrospinning conditions were determined by using the signal-to-noise (S/N) ratio that was calculated from the electrospun Nylon 6,6 nanofibers diameters according to “the-smaller-the-better” approach. The optimum Nylon 6,6 concentration (NY%) and FA/DCM ratio were determined. The morphology of electrospun nanofibers is significantly altered by FA/DCM solvent ratio as well as Nylon 6,6 concentration. The smallest diameter and the narrowest diameter distribution of Nylon 6,6 nanofibers ([Formula: see text][Formula: see text]nm) were obtained for 10 wt% Nylon 6,6 solution in 80 wt% FA and 20 wt% DCM. An increase of 118%, 280% and 26% in tensile strength, modulus of elasticity and elongation at break over as-cast was obtained, respectively. Glass transition temperature of Nylon 6,6 nanofibers were determined by using differential scanning calorimeter (DSC). Analysis of variance ANOVA shows that NY% is the most influential parameter.


2013 ◽  
Vol 849 ◽  
pp. 337-342 ◽  
Author(s):  
Narissara Kulpreechanan ◽  
Tanom Bunaprasert ◽  
Ratthapol Rangkupan

Electrospinning of polycaprolactone (PCL) in a mixed solvent of dichloromethane (DCM)/dimethylformamide (DMF) with 1:1 volumetic mixing ratio was studied. The effects of solution concentration (5-30 %w/v), applied voltage (10-25 kV), solution flow rate (0.1-2.0 mL/h) and collecting distance (10, 20 cm) on fiber formation and morphology were investigated. The size of PCL fibers obtained were in the range of 10s nm-2.6 μm with either bead on string or smooth fiber morphology. In this study, the solution concentration strongly affected fiber size exponentially. The fiber size also increased with an increase in solution flow rate. The applied voltage and the collecting distance have no or minimal effect on PCL fiber size.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Fatemeh Roozbahani ◽  
Naznin Sultana ◽  
Davood Almasi ◽  
Farnaz Naghizadeh

Poly(ε-caprolactone)/chitosan (PCL/chitosan) blend nanofibers with different ratios of chitosan were electrospun from a formic acid/acetic acid (FA/AA) solvent system. Bovine serum albumin (BSA) was used as a model protein to incorporate biochemical cues into the nanofibrous scaffolds. The morphological characteristics of PCL/chitosan and PCL/chitosan/BSA Nanofibers were investigated by scanning electron microscopy (SEM). Fourier transform infrared spectroscopy (FTIR) was used to detect the presence of polymeric ingredients and BSA in the Nanofibers. The effects of the polymer blend ratio and BSA concentration on the morphological characteristics and consequently on the BSA release pattern were evaluated. The average fiber diameter and pore size were greater in Nanofibers containing BSA. The chitosan ratio played a significant role in the BSA release profile from the PCL/chitosan/BSA blend. Nanofibrous scaffolds with higher chitosan ratios exhibited less intense bursts in the BSA release profile.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2232
Author(s):  
Yulia Tertyshnaya ◽  
Svetlana Karpova ◽  
Maksim Moskovskiy ◽  
Aleksey Dorokhov

Non-woven polylactide-natural rubber fiber materials with a rubber content of 5, 10 and 15 wt.% were obtained by electrospinning. The thermal, dynamic, and mechanical properties of the fibers were determined. It was shown that the average fiber diameter increased with adding of the NR content, while the linear and surface densities changed slightly. Using the differential scanning calorimetry, the thermal characteristics were obtained. It was found that the glass transition temperature of polylactide increased by 2–5 °C, and the melting temperature increased by 2–4 °C in the presence of natural rubber in the samples. By the method of electronic paramagnetic resonance at T = 50 and 70 °C it was determined that the mobility of the amorphous phase in PLA/NR fibers increased with the addition of NR. The adding of NR at a content of 15 wt.% increased the value of elongation at break by 3.5 times compared to pure PLA.


2020 ◽  
Vol 71 (1) ◽  
pp. 1-12
Author(s):  
Salman H. Abbas ◽  
Younis M. Younis ◽  
Mohammed K. Hussain ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor ◽  
...  

The biosorption performance of both batch and liquid-solid fluidized bed operations of dead fungal biomass type (Agaricusbisporus ) for removal of methylene blue from aqueous solution was investigated. In batch system, the adsorption capacity and removal efficiency of dead fungal biomass were evaluated. In fluidized bed system, the experiments were conducted to study the effects of important parameters such as particle size (701-1400�m), initial dye concentration(10-100 mg/L), bed depth (5-15 cm) and solution flow rate (5-20 ml/min) on breakthrough curves. In batch method, the experimental data was modeled using several models (Langmuir,Freundlich, Temkin and Dubinin-Radushkviechmodels) to study equilibrium isotherms, the experimental data followed Langmuir model and the results showed that the maximum adsorption capacity obtained was (28.90, 24.15, 21.23 mg/g) at mean particle size (0.786, 0.935, 1.280 mm) respectively. In Fluidized-bed method, the results show that the total ion uptake and the overall capacity will be decreased with increasing flow rate and increased with increasing initial concentrations, bed depth and decreasing particle size.


2019 ◽  
Vol 15 (1) ◽  
Author(s):  
Vibha Devi ◽  
Shabina Khanam

Abstract In the present work, supercritical fluid extraction (SFE) of hemp (Cannabis sativa) seed oil at various ranges of SFE parameters is performed. These parameters and respective ranges are temperature (40–80) °C, pressure (200–350) bar, solvent (CO2) flow rate (5–15) g/min, particle size (0.43–1.02) mm and amount of co-solvent (ethanol) (0–10) % of solvent flow rate. Central composite design (CCD) suggests 32 experimental runs to perform through SFE. The obtained oil is analysed through gas chromatography to identify its fatty acids concentrations. The ratio of ω-6 linoleic and ω-3 α-linolenic fatty acids (ω-6/ω-3) is optimized through CCD to obtain the desired amount of 3:1 as this ratio is highly preferred for various health benefits. Ratio of ω-6/ω-3 is obtained in the range from 2.11 to 3.06:1 for all experimental runs. The effect of SFE parameters on this ratio is investigated. Further, cross-validation is peformed on the experimental data obtained for the concentrations of both fatty acids by jackknife and bootstrap resampling to authenticate the obtained data. Small value of standard deviation (~1), less standard error of the mean (SEM) (<0.8) and less variance coefficient (<0.11) confirms the validity of the obtained data. All the estimators’ values such as standard deviation, variance coefficients and SEM are observed in 95 % of confidence intervals.


Sign in / Sign up

Export Citation Format

Share Document