Thermal Contraction of AA5182 for Prediction of Ingot Distortions

2006 ◽  
Vol 306-308 ◽  
pp. 977-982 ◽  
Author(s):  
Suyitno ◽  
Dmitry G. Eskin ◽  
Laurens Katgerman

Shape distortions and hot cracking during casting are strongly related to thermal contraction during and after solidification. The understanding of this phenomenon is crucial in designing defect-free cast products and in numerical simulation of their thermomechanical behavior. This paper presents the results of experimental and numerical simulation work on the thermal contraction during and after solidification of a commercial AA5182 alloy. In the specially developed experimental set-up, the contraction is measured simultaneously with temperature while the material solidifies and cools down in the solid state. An elasto-viscoplastic constitutive model fitted to experimental data is used in finite element simulations of the contraction process. The implementation of thermal contraction data for ingot distortion during the start-up phase of casting is also included. The results show that the contraction starts at a certain temperature in the nonequilibrium solidification range, close to the non-equilibrium solidus. Good agreement is found between simulation and experimental results.

2020 ◽  
Vol 319 ◽  
pp. 06003
Author(s):  
Chenyu Kang ◽  
Jiangtao Yi

The improvement of soil undrained shear strength induced by installation of sand compaction pile (SCP), called set up effect, has observed in a number of field tests, but not been considered by the design code. Due to the lack of effective technical means, the numerical simulation of this problem mainly focused on single pile in the past studies. In this paper, a multi-stage Eulerian-Lagrangian (MSEL) technique is used to simulate the installation and consolidation process of double piles. Firstly, a centrifuge model test is used to benchmark this technique and reached a good agreement. Through the analysis of a single pile results, the strength growth curve conforming to the growth law is fitted. Finally, based on the results of single and double piles and considering the sheltering and accumulating effect, a method to predict the soil strength change after SCP group installation is proposed.


2003 ◽  
Vol 3 (1-2) ◽  
pp. 201-207
Author(s):  
H. Nagaoka ◽  
T. Nakano ◽  
D. Akimoto

The objective of this research is to investigate mass transfer mechanism in biofilms under oscillatory flow conditions. Numerical simulation of turbulence near a biofilm was conducted using the low Reynold’s number k-ɛ turbulence model. Substrate transfer in biofilms under oscillatory flow conditions was assumed to be carried out by turbulent diffusion caused by fluid movement and substrate concentration profile in biofilm was calculated. An experiment was carried out to measure velocity profile near a biofilm under oscillatory flow conditions and the influence of the turbulence on substrate uptake rate by the biofilm was also measured. Measured turbulence was in good agreement with the calculated one and the influence of the turbulence on the substrate uptake rate was well explained by the simulation.


1988 ◽  
Vol 20 (6-7) ◽  
pp. 263-270 ◽  
Author(s):  
K. Otsubo ◽  
K. Muraoka

The dispersion and resuspension of sediments in Takahamairi Bay basin of Lake Kasumigaura were studied by means of field research and numerical simulation. The field data on wind direction and velocity, lake current, water wave, and turbidity were shown. Based on these results, we discuss how precipitated sediments were resuspended in this shallow lake. To predict the turbidity and the depth of bed erosion, a simulation model was established for this lake. The calculated turbidity showed good agreement with the field data. According to the simulated results, the turbidity reaches 200 ppm, and the bed is eroded several millimeters deep when the wind velocity exceeds 12 m/s in the lake.


1996 ◽  
Vol 150 ◽  
pp. 409-413
Author(s):  
Patrick P. Combet ◽  
Philippe L. Lamy

AbstractWe have set up an experimental device to optically study the scattering properties of dust particles. Measurements over the 8 — 174° interval of scattering angles are performed on a continuously flowing dust loaded jet illuminated by a polarized red HeNe laser beam. The scattering is averaged over the population of the dust particles in the jet, which can be determined independently, and give the “volume scattering function” for the two directions of polarization directly. While results for spherical particles are in good agreement with Mie theory, those for arbitrary particles show conspicuous deviations.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 268
Author(s):  
Olga V. Soloveva ◽  
Sergei A. Solovev ◽  
Ruzil R. Yafizov

In this work, a study was carried out to compare the filtering and hydrodynamic properties of granular filters with solid spherical granules and spherical granules with modifications in the form of micropores. We used the discrete element method (DEM) to construct the geometry of the filters. Models of granular filters with spherical granules with diameters of 3, 4, and 5 mm, and with porosity values of 0.439, 0.466, and 0.477, respectively, were created. The results of the numerical simulation are in good agreement with the experimental data of other authors. We created models of granular filters containing micropores with different porosity values (0.158–0.366) in order to study the micropores’ effect on the aerosol motion. The study showed that micropores contribute to a decrease in hydrodynamic resistance and an increase in particle deposition efficiency. There is also a maximum limiting value of the granule microporosity for a given aerosol particle diameter when a further increase in microporosity leads to a decrease in the deposition efficiency.


1984 ◽  
Vol 106 (1) ◽  
pp. 29-35 ◽  
Author(s):  
P. Cawley

The susceptibility to bias error of two methods for computing transfer (frequency response) functions from spectra produced by FFT-based analyzers using random excitation has been investigated. Results from tests with an FFT analyzer on a single degree-of-freedom system set up on an analogue computer show good agreement with the theoretical predictions. It has been shown that, around resonance, the bias error in the transfer function estimate H2 (Syy/Sxy*) is considerably less than that in the more commonly used estimate, H1 (Sxy/Sxx). The record length, and hence the testing time, required for a given accuracy is reduced by over 50 percent if the H2 calculation procedure is used. The analysis has also shown that if shaker excitation is used on lightly damped structures with low modal mass, it is important to minimize the mass of the force gage and the moving element of the shaker.


Author(s):  
D M Sirkett ◽  
B J Hicks ◽  
C Berry ◽  
G Mullineux ◽  
A J Medland

The folding carton is a widely used packaging solution. Recent European Union packaging legislation has forced carton manufacturers to use lighter-weight grades of carton board. This typically results in a reduction in board stiffness, which can lead to decreased process efficacy or even prevent successful processing. In order to overcome this, end-users lower production rates and fine-tune packaging machine settings for each pack and material. This trial-and-error approach is necessary because the rules relating machine set-up to pack design and material properties are not generally well known. The present study addresses this fundamental issue through the creation of a finite-element computer simulation of carton processing. Mechanical testing was performed to ascertain the key mechanical properties of the carton walls and creases. The carton model was validated against the experimental results and was then subjected to the machine-material interactions that take place during complex packaging operations. The overall approach was validated and the simulation showed good agreement with the physical system. The results of the simulation can be used to determine guidelines relating machine set-up criteria to carton properties. This will improve responsiveness to change and will ultimately allow end-users to process thinner lighter-weight materials more effectively.


2012 ◽  
Vol 538-541 ◽  
pp. 725-729
Author(s):  
Han Ming Liu ◽  
Heng Zhao ◽  
Ning Li

In lifting, remoted operated dive vehicle(ROV) may swing with the effect of wave. Based on the general form of Lagrange’s equation, a 3-DOF nonlinear swing motion kinematic model was set up. The kinematic response was studied using methods of numerical simulation. The results demonstrated that the kinematic response depends on the length of cable, lifting speed and excitation frequency. Conclusions drawn from this work can be used for safety assessment and theoretical basis for lifting ROV.


1999 ◽  
Vol 392 ◽  
pp. 45-71 ◽  
Author(s):  
ILIAS ILIOPOULOS ◽  
THOMAS J. HANRATTY

Dispersion of fluid particles in non-homogeneous turbulence was studied for fully developed flow in a channel. A point source at a distance of 40 wall units from the wall is considered. Data obtained by carrying out experiments in a direct numerical simulation (DNS) are used to test a stochastic model which utilized a modified Langevin equation. All of the parameters, with the exception of the time scales, are obtained from Eulerian statistics. Good agreement is obtained by making simple assumptions about the spatial variation of the time scales.


2011 ◽  
Vol 378-379 ◽  
pp. 15-18
Author(s):  
Yong Bin Zhang ◽  
Zheng Zhao Liang ◽  
Shi Bin Tang ◽  
Jing Hui Jia

In this paper, a ring shaped numerical specimen is used to studying the failure process in brittle materials. The ring specimen is subjected to a compressive diametral load and contains two angled central cracks. Numerical modeling in this study is performed. It is shown that the obtained numerical results are in a very good agreement with the experiments. Effect of the crack orientation angle on the failure modes and loading-displace responses is discussed. In the range of 0°~40°, the fracture paths are curvilinear forms starting from the tip of pre-existing cracks and grow towards the loading points. For the crack orientation angle 90°, vertical fractures will split the specimen and the horizontal cracks do not influence the fracture process.


Sign in / Sign up

Export Citation Format

Share Document