Evaluation of Interfacial Properties of Sisal Fiber Reinforced High Density Polyethylene (HDPE) Composites

2007 ◽  
Vol 334-335 ◽  
pp. 625-628 ◽  
Author(s):  
Yan Li ◽  
Hong Xia Deng ◽  
Ye Hong Yu

Statistical methods were employed to study the structure characteristics of sisal fibers. Two types of fiber surface treatment methods, namely chemical bonding and oxidization were used to improve the interfacial bonding properties of sisal fiber reinforced HDPE (sisal/HDPE) composites. Interfacial properties were evaluated by single fiber pull out test. The interfacial shear strength (IFSS) was calculated and analyzed by the statistical parameters. The results were compared with those obtained by traditional ways. A novel method which could more accurately evaluate the interfacial properties between natural fiber and polymeric matrices was proposed.

2014 ◽  
Vol 906 ◽  
pp. 167-177 ◽  
Author(s):  
Hou Lei Gan ◽  
Lei Tian ◽  
Chang Hai Yi

Abstract: The Interface of sisal fiber which was treated by using alkali, potassium permanganate, atmospheric plasma and silane reinforced polypropylene composites were investigated by single fiber pull-out testes and surface morphology were studied. The results indicated that the morphological changes observed on the sisal fiber surface were obviously evident. Untreated, permanganate and plasma treated sisal fiber reinforced PP show a stable debonding process. Silane treated sisal fiber reinforced PP show an unstable debonding process. Single fiber pull-out tests indicated that the IFSS value was in the order of FIB < FIBKMnO4 < FIBP < FIBKH-550 < FIBKH-570. As can be seen from surface morphology of pull-out fiber, a little of PP resin was adhered to the pull-out FIB, FIBKMnO4, FIBP of sisal fiber. In contrast, PP resin at the surface of pull-out fiber was flaked off and sisal fibril was drawn out from sisal fiber were observed from pull-out fibers of FIBKH-550 and FIBKH-570.


2008 ◽  
Vol 47-50 ◽  
pp. 149-152 ◽  
Author(s):  
Min Zhi Rong ◽  
Su Ping Wu ◽  
Ming Qiu Zhang

In this work, a simple but effective approach was reported for preparing natural fiber reinforced plastic foams based on plant oil with excellent compressive performance and biodegradability. Firstly, epoxidized soybean oil (ESO) was converted into its acrylate ester AESO, which can be free-radically copolymerized with reactive diluents like styrene to give thermosetting resins and their foam plastics. Then the bio-foam composites were produced using short sisal fiber as the reinforcement. Effects of fiber loading, length and surface treatment on properties of the foam composites were investigated. It was found that exposure of the fibers to gas cells of the foam reduced the effectiveness of interfacial effect, which is different from conventional bulk composites. As a result, reinforcing ability of sisal fibers became a function of fiber length, loading, etc. Furthermore, the plastic foams based on plant oil resin were proved to be biodegradable in soil burial or in the presence of fungi.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Zhaoqian Li ◽  
Xiaodong Zhou ◽  
Chonghua Pei

Mechanical properties of composites are strongly influenced by the quality of the fiber/matrix interface. The objective of this study was to evaluate the mechanical properties of polylactide (PLA) composites as a function of modification of sisal fiber with two different macromolecular coupling agents. Sisal fiber reinforced polylactide composites were prepared by injection molding, and the properties of composites were studied by static/dynamic mechanical analysis (DMA). The results from mechanical testing revealed that surface-treated sisal fiber reinforced composite offered superior mechanical properties compared to untreated fiber reinforced polylactide composite, which indicated that better adhesion between sisal fiber and PLA matrix was achieved. Scanning electron microscopy (SEM) investigations also showed that surface modifications improved the adhesion of the sisal fiber/polylactide matrix.


2011 ◽  
Vol 410 ◽  
pp. 39-42
Author(s):  
Sawitri Srisuwan ◽  
Pranee Chumsamrong

The aim of this work was to investigate the effects of fiber architecture and fiber surface treatment on flexural and impact properties of woven sisal fiber/epoxy composites. The woven sisal fibers with three different weave types including plain weave (P-weave), harness satin weave (S-weave) and right hand twill weave (R-weave) were used. For untreated fiber/epoxy composites, the fiber contents in the composite were 0, 5, 10 and 15% by weight (%wt). The untreated S-weave sisal fiber/epoxy composites showed the best overall properties and the composites with 15% fiber loading showed the highest properties. When compared to pure epoxy, flexural strength, flexural modulus and impact strength of the composite with 15% wt fiber increased by 4.5%, 60.6% and 150% respectively. Therefore, the composite of 15% wt silane treated S-weave and epoxy was prepared in order to study the effect of fiber surface treatment. The results showed that the composite containing 15% wt silane treated fiber possessed nearly the same properties with the untreated fiber/epoxy composite.


2014 ◽  
Vol 600 ◽  
pp. 421-432 ◽  
Author(s):  
Saulo Rocha Ferreira ◽  
Paulo Roberto Lopes Lima ◽  
Flávio Andrade Silva ◽  
Romildo Dias Toledo Filho

Cycles of wetting and drying can change the microstructure of vegetable fibers through a mechanism known as hornification, which modifies the polymeric structure of the fiber-cells resulting in a higher dimensional stability. In the present work the influence of hornification on the sisal fiber-matrix bond adhesion as well as in the sisal fiber dimensional stability and mechanical behaviour under direct tension was evaluated. Furthermore, cementitious composites reinforced with randomly dispersed hornified sisal fibers were developed and characterized under bending loads. The results show that the tensile strength and strain at failure of the hornified sisal fibers were increased by about 5% and 39%, respectively, whereas the modulus of elasticity was reduced by 9%. The fibers also presented higher dimensional stability with the hornification process. The fiber-matrix bonding was improved and the pull-out resistance of the fibers submitted to ten cycles of wetting and drying was increased by about 40% to 50%. The higher fiber-matrix bond strength contributed to an increase in the ductility and post-cracking behaviour of the composite. The fracture process was characterized by the formation of multiple cracks with the hornified sisal fibers presenting a higher ability to bridge and arrest the cracks.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2838-2843 ◽  
Author(s):  
KAZUYA OHKITA ◽  
HITOSHI TAKAGI

In recent years, from an environmental perspective, there has been increasing interest in the change to a sustainable society. The use of natural-fiber-reinforced biodegradable composites has been proposed as one solution. Bamboo is an often used renewable bio-resource; it has an inherent advantage of rapid growth. Polybutylene succinate ( PBS ), used as matrix resin, has biodegradable characteristics. This paper describes flexural properties of bamboo/ PBS composites prepared by injection molding. The following results were obtained. The flexural modulus was improved with increasing bamboo powder contents when the cylinder temperature of the injection molder was 140°C. However, the flexural strength showed the opposite tendency to be decreased with increasing bamboo powder contents. An SEM photomicrograph of the fracture surface for bamboo/ PBS composites showed typical fracture behavior of pull-out fibers without fiber fracture. Furthermore, there was no adhesion of PBS resin on the bamboo fiber surface. Processing conditions affected mechanical properties of bamboo/ PBS composites, imparting higher flexural strength and flexural modulus at high cylinder temperatures such as 180°C and 200°C.


Sign in / Sign up

Export Citation Format

Share Document