Evaluating Mechanical Properties of Ceramics by Relative Methods

2007 ◽  
Vol 336-338 ◽  
pp. 2406-2410
Author(s):  
Yi Wang Bao ◽  
Xiao Xue Bu ◽  
Yan Chun Zhou ◽  
Li Zhong Liu

A relative method, defined as indirect approach to evaluate the material properties via the relationship between unknown properties and a known property, is proposed to estimate some properties that could not be measured by the traditional methods for ceramics. Experiments and theoretic analysis based on the relative method were carried out in this study to estimate the properties in following aspects: determining the temperature dependence of elastic modulus of some machineable ceramics by comparing the deflections; obtaining the modulus and strength of ceramic coatings supported by substrates, from the variation in properties of the rectangular beam samples before and after coating; estimating the residual stresses in tempered glass by comparing the change in the surface strength after strengthening.

2018 ◽  
Vol 69 (05) ◽  
pp. 381-389
Author(s):  
MENGÜÇ GAMZE SÜPÜREN ◽  
TEMEL EMRAH ◽  
BOZDOĞAN FARUK

This study was designed to explore the relationship between sunlight exposure and the mechanical properties of paragliding fabrics which have different colors, densities, yarn counts, and coating materials. This study exposed 5 different colors of paragliding fabrics (red, turquoise, dark blue, orange, and white) to intense sunlight for 150 hours during the summer from 9:00 a.m. to 3:00 p.m. for 5 days a week for 5 weeks. Before and after the UV radiation aging process, the air permeability, tensile strength, tear strength, and bursting strength tests were performed. Test results were also evaluated using statistical methods. According to the results, the fading of the turquoise fabric was found to be the highest among the studied fabrics. It was determined that there is a significant decrease in the mechanical properties of the fabrics after sunlight exposure. After aging, the fabrics become considerably weaker in the case of mechanical properties due to the degradation in both the dyestuff and macromolecular structure of the fiber


2014 ◽  
Vol 7 (1) ◽  
pp. 109-118
Author(s):  
Jenan Mohammed Nagie

This paper is aimed to study the effect of cooling rate on mechanical properties of Steel 35. Specimens prepared to apply tensile, torsion, impact and hardness tests.Many prepared specimens heat treated at (850ºC) for one hour and subsequently were cooled by three different media [Water-Air-furnace] to show the effect of Medias cooling rate on mechanical properties. Microstructures of all specimens examined before and after heat treatment by an optical microscopy.To figure the phases obtained after heat treatment and its effect on the mechanical properties Experimental results have shown that the microstructure of steel can be changed and significantly improved by varying line cooling rate thus, improving one property will effect on the others because of the relationship between all properties.In water media tensile, torsion and hardness improved while impact results reduced. Air media contributed in improving most of the mechanical properties because of grain size homogeneity. At furnace media ductility and impact improved


2014 ◽  
Vol 2014 (1) ◽  
pp. 000008-000012
Author(s):  
Tengfei Jiang ◽  
Chenglin Wu ◽  
Jay Im ◽  
Rui Huang ◽  
Paul S. Ho

In this paper, the effects of Cu microstructure on the mechanical properties and extrusion of though-silicon vias (TSVs) were studied based on two types of TSVs with different microstructure. A direct correlation was found between the grain size and the mechanical properties of the vias. Both an analytical model and FEA were used to establish the relationship between the mechanical properties and via extrusion. The effect of via/Si interface on extrusion was also studied by FEA. The results suggest small and uniform grains in the Cu vias, as well as stronger interfaces between the via and Si led to smaller via extrusion, and are thus preferable for reduced via extrusion failure and improved TSV reliability.


2015 ◽  
Vol 12 (3) ◽  
pp. 118-122 ◽  
Author(s):  
Tengfei Jiang ◽  
Chenglin Wu ◽  
Jay Im ◽  
Rui Huang ◽  
Paul S. Ho

In this article, the effects of Cu microstructure on the mechanical properties and extrusion of through-silicon vias (TSVs) were studied based on two types of TSVs with different microstructure. A direct correlation was found between the grain size and the mechanical properties of the vias. Both an analytical model and finite element analysis (FEA) were used to establish the relationship between the mechanical properties and via extrusion. The effect of via/Si interface on extrusion was also studied by FEA. The results suggest small and uniform grains in the Cu vias, as well as stronger interfaces between the via and Si led to smaller via extrusion, and are thus preferable for reduced via extrusion failure and improved TSV reliability.


2004 ◽  
Vol 852 ◽  
Author(s):  
Eric Hagan ◽  
Alison Murray

ABSTRACTThe mechanical properties of early artist's acrylic paints were investigated under controlled aqueous additive leaching for the purpose of identifying changes caused by cleaning paintings with water. Strength and stiffness values were obtained using a tensiometer to collect stress-strain curves of paint films. The results were compared to those from similar experiments in which paint films were tested under various age, temperature, and relative humidity (RH) values. Strength and stiffness both increased with decreased temperature, decreased RH, increased age, and increased additive removal. The most significant impact on mechanical properties was caused by lowering temperature to the Tg region around 5°C. Dramatic changes in properties were caused by RH fluctuations; however, the magnitudes were negligible in comparison to those induced by low temperature. Removal of water-soluble additives produced a uniform increase in tensile strength and secant modulus at all RH values. The films were equally responsive to fluctuations in RH before and after additive leaching. In comparing the material properties across a wide range of conditions it is evident that the acrylic paints in this study were not significantly altered by the amount of water exposure involved in cleaning paintings.


2020 ◽  
Vol 92 (10) ◽  
pp. 1533-1538
Author(s):  
Hande Yavuz

Purpose This study aims to investigate the relationship between material properties and alloying elements of carbon steels through predictive modeling. Aircraft control cables are usually made of steel materials and subjected to deformation because of the motion of control surfaces such as aileron, rudder, elevator and trailing edge flaps. Investigation of the relationship between material properties and alloying elements would therefore be explored. Design/methodology/approach This study is focused on the modeling of mechanical properties of carbon steels concerning the content of alloying elements by using response surface methodology with false discovery rate (FDR) correction approach. SAS Institute JMP data analysis software was used to develop response and argument relationships in various carbon steels without including thermomechanical treatment effect. Mechanical properties were considered as tensile strength, yield strength, ductility, and Brinell hardness. Carbon (0.28 Wt.%-0.46 Wt.%) and manganese (0.7 Wt.%-0.9 Wt.%) proportions were gathered from ASM Handbook. Linear regression models were tested for the statistical adequacy by using analysis of variance and statistical significance analysis. A posterior probability, which refers to Benjamini–Hochberg FDR (BH-FDR), was embedded as multiple testing corrections of the t-test p-values. Findings Predictive modeling of the material properties for aircraft control cables was successfully achieved by using the response surface method with BH-FDR significance level of 0.05. Originality/value The effect of statistically developed graphical interactions of alloying elements on the common mechanical properties of such steels would provide prompt comparison to material suppliers and part manufacturers except those subjected to thermomechanical treatment applications.


Author(s):  
Stephanie A. Wimmer ◽  
Virginia G. DeGiorgi ◽  
Edward P. Gorzkowski ◽  
John Drazin

Thermal protection of components such as turbine blades is often done with thermal barrier coatings which are typically ceramic materials. Methods to manufacture ceramic coatings are being developed to create microstructures that optimize thermal protection without degrading mechanical properties of the coating. The coating requires sufficient mechanical properties to remain in place during loads associated with the operation of the component. The work presented in this paper is part of a broader effort that focuses on novel processing techniques. A fabrication method of interest is the inclusion of spherical micron-sized pores to scatter photons at high temperatures along with nano-sized grains to scatter phonons. Pores are sized and distributed so that mechanical strength is maintained. In the current work, yttria-stabilized zirconia (YSZ) is modeled. Three-dimensional microstructures representing YSZ are computationally generated. The defect sizes and orientations are generated to match an experimentally observed distribution. The defects are either randomly or regularly placed in the microstructural models. Stress-displacement analysis is used to determine effective bulk material properties. Comparisons are made to prior two-dimensional work and to experimental measurements available in the literature as appropriate. The influences that defect distributions and three dimensional effects have on the effective bulk material properties are quantified. This work is a preliminary step toward understanding the impacts that micron sized pores, voids and cracks have on thermal and mechanical characteristics. The goal is to facilitate optimizing the microstructure for thermal protection and strength retention.


2013 ◽  
Vol 577-578 ◽  
pp. 357-360
Author(s):  
Ayumi Satoh ◽  
Kanji Yamada ◽  
Yasuji Shinohara

This paper aims at revealing the relationship between fractographic parameters of the mortar-mortar interface and the mechanical properties of such interface in terms of flexural strength and fracture energy. The FEM simulation was conducted where 8 cases of the combination of material properties were applied for all 7 interface models. The fractographic parameters evaluated on each interface model were six. Among them, both Sd (standard deviation of the height) and RL (ratio of the real length of the crack path to the projected length) are closely related to the mechanical properties.


2018 ◽  
Vol 42 (5) ◽  
pp. 511-517 ◽  
Author(s):  
Rachel H Teater ◽  
Kristine M Fischenich ◽  
Benjamin B Wheatley ◽  
Lisa Abrams ◽  
Sheryl A Sorby ◽  
...  

Background: Designed by Dr. Sethi, the Jaipur Foot prosthesis is ideally suited for amputees in developing countries as it utilizes locally sourced, biodegradable, inexpensive materials and is focused on affordability and functionality. To date, however, no data have been reported on the material properties of the foot components. Objectives: The goal of this work was to evaluate mechanical properties of the Jaipur Foot components to guide foot design and manufacturing and reduce weight. Study Design: Experimental. Methods: Mechanical testing was conducted on two types of woods (ardu and cheed), microcellular rubber, tire cord, cushion compound, tread compound, and skin-colored rubber. Each material was subjected to testing in either tension or compression based on its location and function in the foot. Samples were tested before and after vulcanization. Two-sample t-tests were used to assess statistical differences. Results: Cheed compressed perpendicular to the grain had a significantly higher modulus of elasticity than ardu ( p < 0.05); however, cheed had a higher density. Vulcanization significantly increased the modulus of skin-colored rubber, cushion compound, and tread compound ( p < 0.05) and decreased the moduli of both microcellular rubber and tire cord ( p < 0.05). Conclusion: The material property results from this study provide information for computer modeling to assess material construction on overall foot mechanics for design optimization. Ardu wood was ideal based on the desire to reduce weight, and the tire cord properties serve well to hold the foot together. Clinical relevance With new knowledge on the material properties of the components of the Jaipur Foot, future design modifications and standardized fabrication can be realized, making the Jaipur Foot more available on a global scale.


Author(s):  
Emin M. Aksoy ◽  
Metin Usta ◽  
Ahmet H. Ucisik

Due to their clinical outcome high flux dialysers containing new generation of dialyser materials have been widely used for patients with chronic renal failure within the last decade [1]. Dialyser membranes are more prone to damage to to the harsh environment during high flux dialysis. Reuse of dialysers has advantages like better biocompatibility and lower cost, any damage of the dialysers membrane during reuse of the dialysers can also cause very serious clinical complications. Therefore reuse of the dialysers is an issue that has to be approached more cautiously. In this study polysulphone dialyser membranes were being investigated in terms of mechanical properties and changes in crystallinity before and after dialysis sessions. Dialysis sessions were performed on five patients with dialysis age less than two years and without any other accompanying disease at the Hemodialysis Department of Istanbul Haydarpasa Numune State Hospital.


Sign in / Sign up

Export Citation Format

Share Document