Microstructures and Mechanical Properties of Thermomechanically Processed TiNbSi Alloys for Biomedical Applications

2007 ◽  
Vol 342-343 ◽  
pp. 553-556
Author(s):  
Won Yong Kim

Mechanical properties and elastic modulus were examined in order to clarify the influence on microstructures in Ti-26Nb-xSi, where x= 0.5, 1 in atomic percent, prepared by arc melting, cold rolling and recrystallization heat treatment. On the basis of microstructural observations and phase analyses, it is evidently revealed that the microstructure of as-quenched sample appeared to mixture appearance consisting of mostly bcc-structured β phase and small amount of orthorhombic-structured α″ phase. Elongated structure parallel to the rolling direction was observed in cold rolled samples, and equiaxed structure with the average grain size of about 20μm was developed for the sample after recrystallization heat treatment. Randomly distributed feature of pole figure was characterized without showing a specific texture component in asquenched sample. Rotated cube, α-fiber and γ-fiber texture components were detected in cold-rolled sample. After recrystallization heat treatment the intensity of α-fiber texture component was markedly decreased, while the rotated cube component becomes sharpened and γ-fiber component remains relatively unchanged. From both elastic modulus and strength point of view recrystallization treatment would be desirable to meet the required mechanical properties of the present alloys for biomedical applications.

2007 ◽  
Vol 544-545 ◽  
pp. 271-274 ◽  
Author(s):  
Han Sol Kim ◽  
Won Yong Kim

This work describes the effect of microstructures on elastic modulus in Ti-26Nb-xSi alloy (x=0.5~1.5at.%) prepared by arc melting, cold rolling and recrystallization heat treatment. OM observation and x-ray diffraction analysis revealed that the microstructure of as-quenched sample appeared to mixture appearance consisting of mostly bcc-structured β phase and small amount of orthorhombic-structured α″ phase. After cold rolling, elongated structure parallel to the rolling direction was observed, and equiaxed structure with the average grain size of about 20~30μm was developed for the sample after recrystallization heat treatment. In as-quenched sample randomly distributed feature of pole figure was characterized without showing a specific texture component. In cold-rolled sample α-fiber, γ-fiber and rotated cube texture components were detected. After recrystallization heat treatment the intensity of α-fiber texture component was markedly decreased, while the rotated cube component becomes sharpened and γ-fiber component remains relatively unchanged. The elastic modulus increased by cold rolling and then decreased by recrystallization over the entire chemical composition range investigated. The variation of elastic modulus values was interpreted in terms of changes in texture components depending on thermomechanical processing.


2021 ◽  
Vol 1016 ◽  
pp. 137-144
Author(s):  
Pedro Akira Bazaglia Kuroda ◽  
Fernanda de Freitas Quadros ◽  
Mycaela Vieira Nascimento ◽  
Carlos Roberto Grandini

This paper deals with the study of the development, structural and microstructural characterization and, selected mechanical properties of Ti-25Ta-50Zr alloy for biomedical applications. The alloy was melted in an arc furnace and various solution heat treatments were performed to analyze the influence of the temperature and time on the structure, microstructure, microhardness and elastic modulus of the samples. The structural and microstructural results, obtained by X-ray diffraction and microscopy techniques, showed that the solution heat treatment performed at high temperatures induces the formation of the β phase, while solution heat treatment performed at low temperatures induces the formation of the α” and ω metastable phases. Regarding the effect of time, samples subjected to heat treatment for 6 hours have only the β phase, indicating that lengthy treatments suppress the α” phase. Regarding the hardness and elastic modulus, the alloy with the α” and ω phases, after treatment performed at a temperature of 500 °C, has a high hardness value and elastic modulus due to the presence of the ω phase that hardens and weakens alloys. The titanium alloys developed in this study have excellent mechanical properties results for use in the orthopedic area, better than many commercial materials such as cp-Ti, stainless steel and Co-Cr alloys.


2007 ◽  
Vol 26-28 ◽  
pp. 789-792
Author(s):  
Han Sol Kim ◽  
Tae Yeub Ra ◽  
H.J. Bang ◽  
Young Gyu Yoo ◽  
Won Yong Kim

Microstructure and texture of Ti-Nb-Si based alloys, prepared by water quenching from β-phase field, cold rolling and recrystallization heat treatment followed by water quenching, were investigated in terms of optical microstructure and analysis of X-ray pole figure result. Optical microstructure observation and X-ray diffraction analysis revealed that the microstructure of as-quenched sample appeared to mixture appearance consisting of mostly bcc-structured β phase and small amount of orthorhombic-structured α″ phase. After cold rolling elongated structure parallel to the rolling direction was observed, and equiaxed structure with the average grain size of about 20~30μm was developed for the sample after recrystallization heat treatment. In as-cold rolled sample we have found well-developed α-fiber texture components which are frequently observed in bcc-structured metals and alloys. In recrystallized sample, rotated cube texture component was weakly detected. The variation of elastic modulus values was interpreted in terms of changes in texture components depending on thermomechanical processing.


2007 ◽  
Vol 558-559 ◽  
pp. 229-234 ◽  
Author(s):  
Su Hyeon Kim ◽  
Seung Zeon Han ◽  
Chang Joo Kim ◽  
Soon Young Ok ◽  
In Youb Hwang ◽  
...  

Copper foils cold rolled up to 92% reduction exhibited a low intensity of the β-fiber texture and a high intensity of the cube and RD (rolling direction)-rotated cube components. After annealing, the recrystallization texture of the foils could be characterized by the mixture of the cube and the S components. An initial strong cube texture with a large grain size might remain a less developed rolling texture component, cube or RD-rotated cube, which would be the source of the S component in the recrystallization texture.


2020 ◽  
Vol 321 ◽  
pp. 08003
Author(s):  
Yujun Du ◽  
Xianghong Liu ◽  
Jinshan Li ◽  
Wenzhong Luo ◽  
Yongsheng He ◽  
...  

Small button ingots of Ti2AlNb alloys with different contents of Mo, V and Zr were melted by vacuum non-consumable arc furnace. Due to the rapid cooling rate during melting process, only β grains without precipitation were observed in most of the button ingots and no regular phenomenon was found. However, when the samples were heated to β phase region and then furnace cooled to room temperate, different morphologies and quantities of primary α phase and second O phase formed from the β grains of different samples. It is suggested that the morphology of α phase was changed from lamellar to quadrilateral with increasing V and the lath O increased with increasing Zr. Besides, the residual β/B2 phase increased with increasing Mo and V. The EDS results showed that Al and Zr were enriched in α phase whereas Nb, Mo and V were enriched in β/B2 phase. The micro-hardness of these samples before and after heat treatment was detected and the micro-hardness increased with increasing Zr and decreasing Mo and V.


2016 ◽  
Vol 258 ◽  
pp. 501-505
Author(s):  
Alice Chlupová ◽  
Milan Heczko ◽  
Karel Obrtlík ◽  
Přemysl Beran ◽  
Tomáš Kruml

Two γ-based TiAl alloys with 7 at.% of Nb, alloyed with 2 at.% Mo and 0.5 at.% C, were studied. A heat treatment leading to very fine lamellar microstructure was applied on both alloys. Microstructure after the heat treatment was described and mechanical properties including fatigue behaviour were measured. The as-received material alloyed with C possesses high strength and very limited ductility, especially at RT. After application of selected heat treatment it becomes even more brittle; therefore, this process could be considered as not appropriate for this alloy. On the contrary, in the case of Mo alloyed material, both strength and ductility are improved by the heat treatment at RT and usual working temperature (~750 °C). Presence of the β phase is responsible for this effect. The selected heat treatment thus can be an alternative for this alloy to other thermomechanical treatments as high temperature forging.


2019 ◽  
Vol 264 ◽  
pp. 02001 ◽  
Author(s):  
Eduardo de Avila ◽  
Jaeseok Eo ◽  
Jihye Kim ◽  
Namsoo P. Kim

PMMA, PC, and PEEK are thermoplastic polymers that possess favorable properties for biomedical applications. These polymers have been used in fields of maxillo-facial, orthopedic, intraocular surgery, and bio-implant, due to their excellent mechanical properties, osteoinductive potential, and antimicrobial capabilities. In this study, the effect of heat treatment on the mechanical properties of 3D printed polymers was characterized. By modifying printing temperature and post heat treatment process, the mechanical properties were specifically tailored for different applications, correlating with the properties of the implants that are commonly made using molding processes.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4223 ◽  
Author(s):  
Xi Zhao ◽  
Shuchang Li ◽  
Fafa Yan ◽  
Zhimin Zhang ◽  
Yaojin Wu

Microstructure evolution and mechanical properties of AZ80 Mg alloy during annular channel angular extrusion (350 °C) and heat treatment with varying parameters were investigated, respectively. The results showed that dynamic recrystallization of Mg grains was developed and the dendritic eutectic β-Mg17Al12 phases formed during the solidification were broken into small β-phase particles after hot extrusion. Moreover, a weak texture with two dominant peaks formed owing to the significant grain refinement and the enhanced activation of pyramidal <c + a> slip at relative high temperature. The tension tests showed that both the yield strength and ultimate tensile strength of the extruded alloy were dramatically improved owing to the joint strengthening effect of fine grain and β-phase particles as compared with the homogenized sample. The solution treatment achieved the good plasticity of the alloy resulting from the dissolution of β-phases and the development of more equiaxed grains, while the direct-aging process led to poor alloy elongation as a result of residual eutectic β-phases. After solution and aging treatment, simultaneous bonding strength and plasticity of the alloy were achieved, as a consequence of dissolution of coarse eutectic β-phases and heterogeneous precipitation of a large quantity of newly formed β-phases with both the morphologies of continuous and discontinuous precipitates.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1067 ◽  
Author(s):  
Florian Huber ◽  
Thomas Papke ◽  
Christian Scheitler ◽  
Lukas Hanrieder ◽  
Marion Merklein ◽  
...  

The aim of this work is to investigate the β-Ti-phase-stabilizing effect of vanadium and iron added to Ti-6Al-4V powder by means of heterogeneous powder mixtures and in situ alloy-formation during laser powder bed fusion (L-PBF). The resulting microstructure was analyzed by metallographic methods, scanning electron microscopy (SEM), and electron backscatter diffraction (EBSD). The mechanical properties were characterized by compression tests, both prior to and after heat-treating. Energy dispersive X-ray spectroscopy showed a homogeneous element distribution, proving the feasibility of in situ alloying by LPBF. Due to the β-phase-stabilizing effect of V and Fe added to Ti-6Al-4V, instead of an α’-martensitic microstructure, an α/β-microstructure containing at least 63.8% β-phase develops. Depending on the post L-PBF heat-treatment, either an increased upsetting at failure (33.9%) compared to unmodified Ti-6Al-4V (28.8%), or an exceptional high compressive yield strength (1857 ± 35 MPa compared to 1100 MPa) were measured. The hardness of the in situ alloyed material ranges from 336 ± 7 HV0.5, in as-built condition, to 543 ± 13 HV0.5 after precipitation-hardening. Hence, the range of achievable mechanical properties in dependence of the post-L-PBF heat-treatment can be significantly expanded in comparison to unmodified Ti-6Al-4V, thus providing increased flexibility for additive manufacturing of titanium parts.


Sign in / Sign up

Export Citation Format

Share Document