Ternary Bio-Nanostructured Systems Prepared under High Pressure Conditions

2007 ◽  
Vol 361-363 ◽  
pp. 539-542 ◽  
Author(s):  
Roxana M. Piticescu ◽  
Viorica Trandafir ◽  
V. Danciu ◽  
Z. Vuluga ◽  
Eugeniu Vasile ◽  
...  

Many researchers have assumed that a combination of hydroxyl apatite (HAP) and collagen (COL) may be the best solution for bone replacement and have prepared their composites by several techniques [1]. However, such HAP/COL composite had no nanostructure similar to bone, and consequently indicated no bone-like mechanical properties. These results demonstrate that the chemical composition similar to bone only is insufficient for bone metabolism and mechanical properties. Mechanical and biological performance of this type of materials could be improved by adding TiO2 within the initial mixture of nanostructured composites [2]. Ternary nanostructured systems consisting of hydroxyl apatite, TiO2 aerogel and collagen were prepared for the first time by hydrothermal procedure in high pressure conditions. Among many advantages, the synthesis method proposed in this paper could lead to formation of chemically bonded compounds as a consequence of high pressure conditions. The resulted material could find applications in bone tissue regenerative medicine, either in powder form for bone defects treatment, or in matrix form as osteoconductive coating for metal implants. Further studies are necessary to evaluate the osteoconductive properties.

2020 ◽  
Author(s):  
Ruobin Dai ◽  
Hongyi Han ◽  
Tianlin Wang ◽  
Jiayi Li ◽  
Chuyang Y. Tang ◽  
...  

Commercial polymeric membranes are generally recognized to have low sustainability as membranes need to be replaced and abandoned after reaching the end of their life. At present, only techniques for downcycling end-of-life high-pressure membranes are available. For the first time, this study paves the way for upcycling fouled/end-of-life low-pressure membranes to fabricate new high-pressure membranes for water purification, forming a closed eco-loop of membrane recycling with significantly improved sustainability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Azam Marjani ◽  
Reza Khan Mohammadi

AbstractHg(II) has been identified to be one of the extremely toxic heavy metals because of its hazardous effects and this fact that it is even more hazardous to animals than other pollutants such as Ag, Au, Cd, Ni, Pb, Co, Cu, and Zn. Accordingly, for the first time, tetrasulfide-functionalized fibrous silica KCC-1 (TS-KCC-1) spheres were synthesized by a facile, conventional ultrasonic-assisted, sol–gel-hydrothermal preparation approach to adsorb Hg(II) from aqueous solution. Tetrasulfide groups (–S–S–S–S–) were chosen as binding sites due to the strong and effective interaction of mercury ions (Hg(II)) with sulfur atoms. Hg(II) uptake onto TS-KCC-1 in a batch system has been carried out. Isotherm and kinetic results showed a very agreed agreement with Langmuir and pseudo-first-order models, respectively, with a Langmuir maximum uptake capacity of 132.55 mg g–1 (volume of the solution = 20.0 mL; adsorbent dose = 5.0 mg; pH = 5.0; temperature: 198 K; contact time = 40 min; shaking speed = 180 rpm). TS-KCC-1was shown to be a promising functional nanoporous material for the uptake of Hg(II) cations from aqueous media. To the best of our knowledge, there has been no report on the uptake of toxic Hg(II) cations by tetrasulfide-functionalized KCC-1 prepared by a conventional ultrasonic-assisted sol–gel-hydrothermal synthesis method.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 789
Author(s):  
Athanasios Dalakouras ◽  
Ioannis Ganopoulos

Exogenous application of RNA molecules is a potent method to trigger RNA interference (RNAi) in plants in a transgene-free manner. So far, all exogenous RNAi (exo-RNAi) applications have aimed to trigger mRNA degradation of a given target. However, the issue of concomitant epigenetic changes was never addressed. Here, we report for the first time that high-pressure spraying of dsRNAs can trigger de novo methylation of promoter sequences in plants.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3854
Author(s):  
Hugo Martínez Sánchez ◽  
George Hadjipanayis ◽  
Germán Antonio Pérez Alcázar ◽  
Ligia Edith Zamora Alfonso ◽  
Juan Sebastián Trujillo Hernández

In this work, the mechanochemical synthesis method was used for the first time to produce powders of the nanocrystalline Nd1.1Fe10CoTi compound from Nd2O3, Fe2O3, Co and TiO2. High-energy-milled powders were heat treated at 1000 °C for 10 min to obtain the ThMn12-type structure. Volume fraction of the 1:12 phase was found to be as high as 95.7% with 4.3% of a bcc phase also present. The nitrogenation process of the sample was carried out at 350 °C during 3, 6, 9 and 12 h using a static pressure of 80 kPa of N2. The magnetic properties Mr, µ0Hc, and (BH)max were enhanced after nitrogenation, despite finding some residual nitrogen-free 1:12 phase. The magnetic values of a nitrogenated sample after 3 h were Mr = 75 Am2 kg–1, µ0Hc = 0.500 T and (BH)max = 58 kJ·m–3. Samples were aligned under an applied field of 2 T after washing and were measured in a direction parallel to the applied field. The best value of (BH)max~114 kJ·m–3 was obtained for 3 h and the highest µ0Hc = 0.518 T for 6 h nitrogenation. SEM characterization revealed that the particles have a mean particle size around 360 nm and a rounded shape.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lijia Cheng ◽  
Tianchang Lin ◽  
Ahmad Taha Khalaf ◽  
Yamei Zhang ◽  
Hongyan He ◽  
...  

AbstractNowadays, artificial bone materials have been widely applied in the filling of non-weight bearing bone defects, but scarcely ever in weight-bearing bone defects. This study aims to develop an artificial bone with excellent mechanical properties and good osteogenic capability. Firstly, the collagen-thermosensitive hydrogel-calcium phosphate (CTC) composites were prepared as follows: dissolving thermosensitive hydrogel at 4 °C, then mixing with type I collagen as well as tricalcium phosphate (CaP) powder, and moulding the composites at 37 °C. Next, the CTC composites were subjected to evaluate for their chemical composition, micro morphology, pore size, Shore durometer, porosity and water absorption ability. Following this, the CTC composites were implanted into the muscle of mice while the 70% hydroxyapatite/30% β-tricalcium phosphate (HA/TCP) biomaterials were set as the control group; 8 weeks later, the osteoinductive abilities of biomaterials were detected by histological staining. Finally, the CTC and HA/TCP biomaterials were used to fill the large segments of tibia defects in mice. The bone repairing and load-bearing abilities of materials were evaluated by histological staining, X-ray and micro-CT at week 8. Both the CTC and HA/TCP biomaterials could induce ectopic bone formation in mice; however, the CTC composites tended to produce larger areas of bone and bone marrow tissues than HA/TCP. Simultaneously, bone-repairing experiments showed that HA/TCP biomaterials were easily crushed or pushed out by new bone growth as the material has a poor hardness. In comparison, the CTC composites could be replaced gradually by newly formed bone and repair larger segments of bone defects. The CTC composites trialled in this study have better mechanical properties, osteoinductivity and weight-bearing capacity than HA/TCP. The CTC composites provide an experimental foundation for the synthesis of artificial bone and a new option for orthopedic patients.


2019 ◽  
Vol 946 ◽  
pp. 380-385
Author(s):  
Boris A. Chaplygin ◽  
Viacheslav V. Shirokov ◽  
Tat'yana A. Lisovskaya ◽  
Roman A. Lisovskiy

The strength of abrasive wheels is one of the key factors affecting the performance of abrasive machining. The paper discusses ways to improve the strength of abrasive wheels. The stress-state mathematical model presented herein is a generalization of the existing models. It is used herein to find for the first time that there are numerous optimal combinations of the elastic modulus and reinforcing material density, which result in the same minimum value of the objective function. It is found out that increasing the radius of the reinforcing component while also optimizing the mechanical properties of its material may increase the permissible breaking speed of the wheel several times. We herein present a regression equation and a nomogram for finding the optimal combination of control factors. Conventional methods for testing the mechanical properties of materials, which have been proven reliable for testing metals and alloys, are not as reliable for testing abrasive materials, as the test results they generate are not sufficiently stable or accurate. We therefore propose an alternative method that does not require any special equipment or special studies.


2019 ◽  
Vol 9 (8) ◽  
pp. 1609 ◽  
Author(s):  
A. K. M. Ashiquzzaman Shawon ◽  
Soon-Chul Ur

Aluminum antimonide is a semiconductor of the Group III-V order. With a wide indirect band gap, AlSb is one of the least discovered of this family of semiconductors. Bulk synthesis of AlSb has been reported on numerous occasions, but obtaining a single phase has always proven to be extremely difficult. This work reports a simple method for the synthesis of single-phase AlSb. Subsequently, consolidation was done into a near single-phase highly dense semiconductor in a form usable for thermoelectric applications. Further, the thermoelectric properties of this system are accounted for the first time. In addition, the mechanical properties of the intermetallic compound are briefly discussed for a possibility of further use.


1980 ◽  
Vol 85 (B3) ◽  
pp. 1462-1468 ◽  
Author(s):  
Chi-Yuen Wang ◽  
Nai-Hsien Mao ◽  
Francis T. Wu

Sign in / Sign up

Export Citation Format

Share Document