An Impact-Abrasion Resistant Surfacing Electrode and its Wear-Resistant Mechanism

2008 ◽  
Vol 373-374 ◽  
pp. 547-550
Author(s):  
Zheng Jun Liu ◽  
Xie Bo Zeng

Aiming at improving the impact wear-resistant performance of metals, a new sort of surfacing electrode named TKCE50 was developed in this paper. This electrode is a Fe-Mn-Cr-Mo-V alloy system and belongs to iron-base wear-resistant materials. Tests like hardness, wear loss and impact-abrasion test were performed on the samples surfaced with the electrode. The results indicated that TKCE50 had not only good welding technological properties, but also super work-hardening effect and perfect impact wear-resistance. In addition, the work-hardening and wear-resistant mechanisms for this electrode were discussed based on corresponding experimental investigation and theoretical analysis.

2007 ◽  
Vol 336-338 ◽  
pp. 1442-1444
Author(s):  
Xiao Le Cheng ◽  
Yi Min Gao ◽  
Jian Dong Xing ◽  
Min Tan ◽  
Guo Shang Zhang ◽  
...  

The TiC particles are selected as reinforced phase and the Hadfield steel as matrix. The powder metallurgy liquid phase sintering technique is adopted to fabricate TiC particles reinforced Hadfield steel matrix composites. The effects of elements Mo and Ni on the performance of the composites were studied. The impact wear tester is adopted to investigate the wear-resistant property of the composites under the different impact loads. Adding Mo can improve the interfacial bonding between the Hadfield steel and TiC, and the best adding ratio between Mo and TiC is 1:3.68. Adding 2%(vol.%)Ni can significantly improve the density and hardness of the composites. The experiment results of impact wear tests show that under the condition of low and middling loads, the composites display the best wear-resistant properties, moreover, the more TiC content is, the better wear-resistance property is. Under 2.0J impact energy, the wear resistance of the composite containing 40%(vol.%) TiC is 1.3 times of Hadfield steel.


Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 45 ◽  
Author(s):  
Erding Wen ◽  
Renbo Song ◽  
Wenming Xiong

The microstructure and wear behavior of a 500 Brinell hardness (HB) grade wear-resistant steel tempered at different temperatures were investigated in this study. The tempering microstructures and wear surface morphologies were studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The relationship between mechanical properties and wear resistance was analyzed. The microstructure of the steel mainly consisted of tempered martensite and ferrite. Tempered troosite was obtained when the tempering temperature was over 280 °C. The hardness decreased constantly with the increase of tempering temperature. The same hardness was obtained when tempered at 260 °C and 300 °C, due to the interaction of Fe3C carbides and dislocations. The impact toughness increased first and reached a peak value when tempered at 260 °C. As the tempering temperature was over 260 °C, carbide precipitation would occur along the grain boundaries, which led to temper embrittlement. The best wear resistance was obtained when tempered at 200 °C. At the initiation of the wear test, surface hardness was considered to be the dominant influencing factor on wear resistance. The effect of surface hardness improvement on wear resistance was far greater than the impact toughness. With the wear time extending, the crushed quartz sand particles and the cut-down burs would be new abrasive particles which would cause further wear. Otherwise, the increasing contact temperature would soften the matrix and the adhesive wear turned out to be the dominant wear mechanism, which would result in severe wear.


2007 ◽  
Vol 129 (3) ◽  
pp. 586-594 ◽  
Author(s):  
H. Yu ◽  
R. Ahmed ◽  
H. de Villiers Lovelock

This paper aims to compare the tribo-mechanical properties and structure–property relationships of a wear resistant cobalt-based alloy produced via two different manufacturing routes, namely sand casting and powder consolidation by hot isostatic pressing (HIPing). The alloy had a nominal wt % composition of Co–33Cr–17.5W–2.5C, which is similar to the composition of commercially available Stellite 20 alloy. The high tungsten and carbon contents provide resistance to severe abrasive and sliding wear. However, the coarse carbide structure of the cast alloy also gives rise to brittleness. Hence this research was conducted to comprehend if the carbide refinement and corresponding changes in the microstructure, caused by changing the processing route to HIPing, could provide additional merits in the tribo-mechanical performance of this alloy. The HIPed alloy possessed a much finer microstructure than the cast alloy. Both alloys had similar hardness, but the impact resistance of the HIPed alloy was an order of magnitude higher than the cast counterpart. Despite similar abrasive and sliding wear resistance of both alloys, their main wear mechanisms were different due to their different carbide morphologies. Brittle fracture of the carbides and ploughing of the matrix were the main wear mechanisms for the cast alloy, whereas ploughing and carbide pullout were the dominant wear mechanisms for the HIPed alloy. The HIPed alloy showed significant improvement in contact fatigue performance, indicating its superior impact and fatigue resistance without compromising the hardness and sliding∕abrasive wear resistance, which makes it suitable for relatively higher stress applications.


2021 ◽  
Vol 11 (21) ◽  
pp. 10236
Author(s):  
Lingfeng Xu ◽  
Zhanhua Song ◽  
Mingxiang Li ◽  
Fade Li ◽  
Jing Guo ◽  
...  

The working environment of agricultural cutting tools is poor, and the operational quality and efficiency are reduced after they become blunt. This study aimed to develop a high wear-resistant agriculture knife with a long life. A Ni–WC alloy, wear-resistant layer was prepared using laser cladding technology on one side of the cutting edge of a 65 Mn silage knife. A self-grinding edge was formed when the cladded knife was used, which improved the cutting quality and service life of the knife. The microstructure, phase, composition, and hardness distribution of the cladding layer were detected and analyzed. The impact toughness and wear resistance of the laser-cladded samples were analyzed, and the cladded knife was tested in the field. The results show that a cladded layer with a dense microstructure formed metallurgical bonds with the substrate. The microhardness was uniform across the cladded layer, and the average hardness of the micro Vickers was approximately 1000 HV(0.2), which was approximately three times the hardness of the substrate. The impact toughness and wear resistance of the coated knife were obviously higher than those of uncoated knives. The field tests showed that compared with a conventional 65 Mn knife, the self-grinding knife with laser cladding could maintain its sharp cutting shape after operation for 76 h, which greatly extended the service life of the knife. This study improved the service life of an agricultural cutting tool, which enhanced the cutting performance and efficiency at the same time.


Alloy Digest ◽  
2008 ◽  
Vol 57 (5) ◽  

Abstract Creusabro 4800 is a high-performance wear-resistant steel exhibiting better resistance than other quenched steels with a hardness of 400 HB. This 4800 alloy uses a combination of fine distribution of microcarbides and an efficient work hardening in service to achieve wear resistance. This datasheet provides information on composition, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and wear resistance as well as forming, machining, and joining. Filing Code: SA-579. Producer or source: Industeel USA, LLC.


2014 ◽  
Vol 15 (1) ◽  
pp. 39-44 ◽  
Author(s):  
M. Akhondizadeh ◽  
M. Fooladi Mahani ◽  
M. Rezaeizadeh ◽  
S.H. Mansouri

2011 ◽  
Vol 279 ◽  
pp. 126-131 ◽  
Author(s):  
Wen Bo Tang ◽  
Yun Gang Guo ◽  
Hon Grui Wang

Hardfacing is one of the most useful and economical ways to improve the performance of components submitted to severe wear conditions. In this paper, a new kind of alloy called Fe-Cr-C-Nb/Ti alloy system for wear resistant successfully with the shielded metal arc welding (SMAW) method has been studied. The microstructure and wear resistant of hardfacing alloys reinforced with primary carbides were compared in this study. Meanwhile, the average hardness, the abrasion weight loss and microstructure of deposited metal were systematically studied by optical microscopy, scanning electronic microscopy and energy dispersive spectrum analysis. The results showed that the microstructure of the best optimizing hardfacing layer was the mixed martensite and little retained austenite, and NbC/TiC particles distributing dispersively in the matrix. The amount of low-carbon martensite and high-carbon martensite was identical. The alloy system showed high wear resistance due to the formation of dispersed MC type carbides and good toughness due to the exist of low carbon martensite in the matrix. The hardfacing alloy reinforced with complex carbides was also investigated, the microstructure was analyzed and its hardness and wear resistance were evaluated. In conclusion, the distribution, the chemical composition and the amount of the carbides, as well as the matrix microstructure are all factors to influence the crack resistance, hardness and wear resistance of the hardfacing alloys.


Sign in / Sign up

Export Citation Format

Share Document