Research on the Force Characteristics in Ultrasonic Grinding Nano-Zirconia Ceramics

2008 ◽  
Vol 375-376 ◽  
pp. 258-262 ◽  
Author(s):  
Guo Fu Gao ◽  
Bo Zhao ◽  
Dao Hui Xiang ◽  
Qing Hua Kong

Nano-ceramics possessed ascendant mechanical property and physical characteristics contrast with traditional engineering ceramics, and its machining with ultrasonic assistance has been considered one of the most efficient methods. In the present paper a novel ultrasonic grinding vibration device has been developed and the theoretical model of grinding force has been created for ultrasonic vibration grinding. The influences of grinding parameters on grinding forces were tested with self-designd acoustic system based on local resonance. According to the test data, the effect of depth of cut and wheel velocity on the grinding force with/without ultrasonic assistance was analyzed. Both in common and ultrasonic grinding the normal grinding force and tangential grinding force descend against the wheel velocity, while ascend along with the depth of cut. In any case the grinding force in ultrasonic grinding was not more that that in common grinding.

2018 ◽  
Vol 198 ◽  
pp. 02004
Author(s):  
Junping Zhang ◽  
Weidong Wang ◽  
Songhua Li ◽  
Han Tao

The impacts of different linear speed of grinding wheel, grinding depth and workpiece feed speed with or without grinding fluid on grinding force were studied by plane grinding machining of zirconia ceramics. The impacts of different machining environment and grinding parameter on normal and tangential grinding forceswere studied by testing the grinding force during grinding with a force measuring device. The studies showed that the normal and tangential grinding forces decrease with the increase of the linear speed of grinding wheel and increase with the improvement of grinding depth and workpiece feed speed. The grinding depth has the greatest impacts on the normal and tangential grinding forces in dry grinding environment; while in wet grinding environment, the grinding depth exerts the greatest impacts on the normal grinding force and the linear speed of grinding wheel imposes the greatest impacts on the tangential grinding force. In addition, it was found that the normal grinding force in dry grinding is minor than that in wet grinding, that the tangential grinding force in dry grinding is greater than that in wet grinding, and that the grinding force ratio in dry grinding is lower than that in wet grinding.


2012 ◽  
Vol 472-475 ◽  
pp. 927-931
Author(s):  
Xin Li Tian ◽  
Fu Qiang Li ◽  
Ya Tao Mao ◽  
Bao Guo Zhang ◽  
Jian Quan Wang

Introducing the grinding mechanism of axial creep-feed grinding ceramics with a single diamond grain. Establishing the simulation model of a single grain grinding engineering ceramics by axial creep-feed grinding and analyzing the simulation results of the grinding force in the X,Y,Z axis. Finally, the impacts of the wheel speed, axial feed rate and workpiece speed upon grinding forces were discussed by simulating the single diamond abrasive grinding process under different grinding conditions.


2007 ◽  
Vol 561-565 ◽  
pp. 933-936
Author(s):  
Guo Fu Gao ◽  
Bo Zhao ◽  
Qing Hua Kong ◽  
Chuan Shao Liu

Experiments on surface features were carried out in honing zirconia engineering ceramics using fine grains. In ultrasonic honing, the surface fracture ratio increased quickly when the depth of cut is more than 3 μm, while in common honing it performed an ascending trend from depth of cut 1.5 μm. The value of surface roughness in ultrasonic honing increased along with the depth of cut; while it descends contrast to the depth of cut when the honing velocity is less than 0.58 m/s in traditional honing. As for honing velocity over 0.74 m/s, it deceased firstly to the minimal value for depth of cut 1μm, then began to ascend along with depth of cut. The value of surface roughness descended to minimum value for the range of honing velocity 0.41-0.58 m/s in traditional honing, while the optimized honing velocity ranged 0.58-0.75 m/s in ultrasonic machining. The surface roughness in ultrasonic honing was superior to that in traditional honing.


2009 ◽  
Vol 76-78 ◽  
pp. 603-608
Author(s):  
Shenq Yih Luo ◽  
Ching Win Shih ◽  
M.H. Chen

The purpose of this paper is to investigate the performance of grinding alumina for the specific designed tools containing a controlled diamond protrusion and arrangement. The grinding forces, workpiece roughness and diamond wear at changing the depth of cut and feed under a fixed spindle speed were studied in the experiments. The experiment results showed that the grinding forces with the increase of feed slowly increased. However, the grinding forces with the increase of depth of cut showed a relatively larger rise. When the depth of cut reached to 0.09 mm that is about one fourth of diamond size, the axial grinding force obtained above about 20 N to cause some weaker or higher protrusive diamonds to produce a relatively larger fracture or pull-out. Furthermore, under a larger depth of cut and a larger feed rate the workpiece roughness obtained was the poorer. When diamond tool was employed for a longer time test under the depth of cut less than about one fourth of grit diameter, diamonds mainly displayed an attritious wear and the alumina roughness was about Ra 1.2-2.2 μm. This designed diamond tools are feasible for grinding alumina.


2014 ◽  
Vol 65 (1) ◽  
pp. 87-92
Author(s):  
Silvia Vulc

Abstract This paper presents a study on grinding tungsten carbide DK460UF, through experimental investigation using diamond grinding wheel with 54 μm grain size. Different sets of experiments were performed to study the effects of the independent grinding parameters such as grinding wheel speed, feed and depth of cut on cutting forces. Test results showed that the feed and depth of cut influence significantly the cutting forces. The research was lead to optimize the process parameters for reducing cutting forces. In this way, for different parameters of cutting regime, it were measured the values of the components of the grinding force, tangential component, Ft and normal component Fn. The results of the experiment showed that it is better to use great speeds and small feed rate and depth of cut in grinding tungsten carbides, such as DK460UF


2013 ◽  
Vol 770 ◽  
pp. 34-38 ◽  
Author(s):  
Shen Shen Gu ◽  
Chang Yong Yang ◽  
Yu Can Fu ◽  
Wen Feng Ding ◽  
Da Shun Huang

In this paper, plunge grinding experiment was conducted on 20CrMnTi with monolayer brazed cubic boron nitride (CBN) wheel. Surface integrity was evaluated through morphology observing and roughness testing. It is found that surface roughness Ra is lower than 0.8μm. Grinding forces were measured and the effects of process parameters (i.e. workpiece speed and depth of cut) on grinding forces were studied. The changing regulation of specific grinding energy with the increase of equivalent chip thickness was revealed. The result shows that both grinding force and specific energy are lower comparing with white fused alumina (WA) wheels. In general, monolayer brazed CBN wheels perform better in grinding of 20CrMnTi than WA wheels.


2012 ◽  
Vol 565 ◽  
pp. 135-141 ◽  
Author(s):  
Young Jae Choi ◽  
Kyung Hee Park ◽  
Yun Hyuck Hong ◽  
Kyeong Tae Kim ◽  
Seok Woo Lee ◽  
...  

In this paper, a ultrasonic horn, which can vibrate longitudinally with a frequency of 20㎑, was designed using finite element method (FEM). And the ultrasonic horn was fabricated for ultrasonic assisted grinding. To evaluate machining performance of the fabricated ultrasonic horn, grinding test was conducted on alumina ceramic (Al2O3). In the grinding test, grinding forces was measured and compared between the conventional grinding and the ultrasonic assisted grinding. The results showed that the grinding force in the ultrasonic grinding was lowered than the conventional grindign by 3~20%.


2010 ◽  
Vol 42 ◽  
pp. 204-208 ◽  
Author(s):  
Xiang Dong Li ◽  
Quan Cai Wang

In this paper, the characteristic of grinding force in two-dimensional ultrasonic vibration assisted grinding nano-ceramic was studied by experiment based on indentation fracture mechanics, and mathematical model of grinding force was established. The study shows that grinding force mainly result from the impact of the grains on the workpiece in ultrasonic grinding, and the pulse power is much larger than normal grinding force. The ultrasonic vibration frequency is so high and the contact time of grains with the workpiece is so short that the pulse force will be balanced by reaction force from workpiece. In grinding workpiece was loaded by the periodical stress field, which accelerates the fatigue fracture.


2017 ◽  
Vol 13 ◽  
pp. 9-14
Author(s):  
Alexander I. Tyurin ◽  
Andrey O. Zhigachev ◽  
Alexey V. Umrikhin ◽  
Vyacheslav V. Rodaev ◽  
Tatyana S. Pirozhkova

For the first time nanostructured engineering ceramics were prepared from natural zirconia mineral (baddeleyite) with CaO as a tetragonal phase stabilizer. The effect of synthesis conditions on microstructure and mechanical properties of the baddeleyite-based ceramics is reported, furthermore, the effect of calcia content on hardness and fracture toughness is studied. Optimal calcia concentration and synthesis conditions are found, corresponding hardness and fracture toughness values are 10,8 GPa and 13,3 MPa×m1/2. The reported mechanical properties are comparable to those typically reported for yttria-stabilized engineering zirconia ceramics, prepared from chemically synthesized zirconia.


2006 ◽  
Vol 304-305 ◽  
pp. 232-235 ◽  
Author(s):  
Dao Hui Xiang ◽  
Y.P. Ma ◽  
Bo Zhao ◽  
Ming Chen

The crack extension course and ductile removal mechanism of nano ZrO2 ceramics were analyzed in this paper. On the basis of contrast tests with or without ultrasonic vibration, the influences of critical ductile grinding depth on grinding forces and surface quality were studied by dynamometer, SEM and AFM in different grinding condition. The reason for the increase of the critical grinding depth was discussed based on the analysis of grinding force and ultrasonic vibration course. At last, the formation mechanism of surface topography observed by AFM in ductile domain was analyzed. The research indicated that ultrasonic machining could obtain nano finished surface with high efficient.


Sign in / Sign up

Export Citation Format

Share Document