Influence of Substrate Nitriding on Adhesion, Friction and Wear Resistance of DLC (Diamond-Like Carbon)-Coatings

2010 ◽  
Vol 438 ◽  
pp. 211-218 ◽  
Author(s):  
Wolfgang Tillmann ◽  
Evelina Vogli ◽  
Fabian Hoffmann ◽  
Patrick Kemdem

Since diamond like carbon layers feature excellent mechanical and tribological behavior under defined environmental circumstances, they are well established in a wide field of industrial and automotive applications in the last decade. However, the pretreatment of the substrate plays also an important role in supporting and enforcing the excellent properties of the coatings. This work analyses the effect of the plasma nitrided cold working steel substrate (80CrV2) on the adhesion, friction and wear resistance of DLC-coatings and compares it to the performance of DLC-coatings applied on a non-hardened substrate material. Therefore the grinded and polished specimens were nitrogen-hardened in an Arc-PVD (Physical Vapor Deposition)-device before the DLC-coating was applied in a Magnetron Sputter-PVD-process. In order to measure the hardness of the thin film coating, a nanoindenter was used. The adhesion was tested with a scratch tester and the wear resistance was measured by using a Ball-on-disc-tester. A 3D-profilometer and a SEM (Scanning Electron Microscope) were utilized to analyze the scratches and wear tracks on the samples. With these results correlations between the substrate nitriding and the mechanical and tribological performance of the DLC-coating were made.

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 376
Author(s):  
Mao Kaneko ◽  
Masanori Hiratsuka ◽  
Ali Alanazi ◽  
Hideki Nakamori ◽  
Kazushige Namiki ◽  
...  

We evaluated the adhesion, friction characteristics, durability against bodily acids, sterilization, cleaning, and anti-reflection performance of diamond-like carbon (DLC) coatings formed as a surface treatment of intracorporeal medical devices. The major coefficients of friction during intubation in a living body in all environments were lower with DLC coatings than with black chrome plating. DLC demonstrated an adhesion of approximately 24 N, which is eight times stronger than that of black chrome plating. DLC-coated samples also showed significant stability without being damaged during acid immersion and high-pressure steam sterilization, as suggested by the results of durability tests. In addition, the coatings remained unpeeled in a usage environment, and there was no change in the anti-reflection performance of the DLC coatings. In summary, DLC coatings are useful for improving intracorporeal device surfaces and extending the lives of medical devices.


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2977-2982
Author(s):  
YOUNG-JUN JANG ◽  
SEOCK-SAM KIM ◽  
JONG-JOO RHA

Multi-layer diamond-like carbon (DLC) coating, 150 and 220 nm thick were deposited by negative pulsed d.c. bias induced with magnetron sputtering. The objective of this research is to resolve a wear resistance in terms of DLC coating residual stress and mechanical properties. The bias was controlled from - 200 to 0 V during 10 second with point contacting controller. The surface structure was continuously fabricating to soft and hard-layer during deposition. It was shown that the compressive residual stress and hardness were 0.09, 18 GPa under multi-layer coating condition. The as-deposited DLC coating has a relatively higher wear resistance than unmodified DLC under nanoabrasive wear. It also showed that multi-layer DLC coating had no wear until 400 nN. The decreased residual stress and increased film hardness in the multi-layer coating gave a rise to increase wear resistance.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1070
Author(s):  
Iñigo Gómez ◽  
Adrián Claver ◽  
José Antonio Santiago ◽  
Iván Fernandez ◽  
Jose Fernandez Palacio ◽  
...  

Diamond-like carbon (DLC) coatings are used due to their extraordinary tribomechanical properties, great hardness, high elastic modulus, high wear resistance, low friction coefficient and chemical inertness, which provide them with biocompatibility. Compared to other physical vapor deposition (PVD) coatings of transition nitrides and carbonitrides, DLC has limited adhesion, so it is necessary to develop new techniques to overcome this limitation. This work reports the results of scratch testing for the measurement of adhesion and of tests for wear resistance and nanoindentation in AISI 316L stainless steel coated with a WC:C coating, produced using novel high-power impulse magnetron sputtering (HiPIMS) technology with positive pulses. In addition, the use of a preceding surface modification technique, specifically plasma immersion ion implantation (PIII), was studied with the aim of optimizing the adhesion of the coating. The results show how the coating improved the tribomechanical properties through the use of positive pulse HiPIMS compared to conventional HiPIMS, with an adhesion result that reached critical load values of 48.5 N and a wear coefficient of 3.96 × 10−7 mm3/nm.


2020 ◽  
Vol 10 (1) ◽  
pp. 688-698
Author(s):  
Joanna Kowalczyk ◽  
Krystian Milewski ◽  
Monika Madej ◽  
Dariusz Ozimina

AbstractThe purpose of the study was to evaluate the properties of diamond-like carbon DLC coatings with ionic liquids and cutting fluid containing zinc aspartate used as lubricants. The DLC coatings (a–C:H) were deposited onto the 100Cr6 steel substrate by physical vapour deposition PVD. The surface morphology testing, cross section and chemical composition analyses of the DLC coatings were performed using the scanning electron microscope, equipped with an EDS microanalyzer. Surface geometry measurements prior to and after tribological tests were performed on a confocal microscope with interferometry. The tribological tests were carried out on an Anton Paar TRB3 tribometer under technically dry friction and lubricated conditions with an ionic liquid, trihexyltetradecylphosphonium bis (trifluoromethylsulfonyl) imide and 1–butyl– 3–methylimidazolium bis (trifluoromethylsulfonyl) imide and cutting fluid with zinc aspartate. The results show that DLC coatings and ionic liquids can significantly reduce resistance to motion.


2018 ◽  
Vol 2 (3) ◽  
pp. 41-47
Author(s):  
V. V. Vasylyev ◽  
V. E. Strel’nitskij ◽  
V. B. Makarov ◽  
M. A. Skoryk ◽  
G. O. Lazarenko

Abstract Hard coatings are increasingly being used in medicine to protect metal endoprostheses The experimental process for the high-productive synthesis of high-quality diamond-like carbon (DLC) coatings with high hardness and a sufficiently high level of adhesion to the spherical shaped parts of the hip joint made from the stainless steel or cobalt-chrome alloy have been developed. DLC coating deposition was performed by vacuum-arc method from a high-productive source of the filtered vacuum-arc carbon plasma of rectilinear type with a "magnetic island". The high degree of thickness uniformity in the coating on the head of the hip joint with a high adhesion to the metal joint base was developed. Modernization of the vacuum arc plasma source allowed to accelerate the cathode spot motion, exclude substrate overheating and increase the diamond-like carbon hardness up to 30-40 GPa. The high adhesion level was achieved as a result of the high voltage pulsed of substrate bias potential use and multilayer architecture of DLC coating. The DLC coating on the heads of hip endoprosthesis did not peel off when boiling endoprosthesis or when immersing it into the liquid nitrogen.


2021 ◽  
Vol 0 ◽  
pp. 1-7
Author(s):  
Hikmetnur Danisman ◽  
Fatih Celebi ◽  
Sengul Danisman ◽  
Ali Altug Bicakci

Objectives: The aim of this study is to apply a diamond-like carbon (DLC) coating on orthodontic brackets and to examine the effects of the coating on surface properties and friction. Materials and Methods: 0.022-inch upper right canine brackets, 0.018-inch stainless steel wires, and 0.019 × 0.025-inch stainless steel wires were used in the study. Half of the brackets were treated with physical vapor deposition technique and coated with DLC. Different binary groups constituted of coated and uncoated brackets and wires were subjected to friction experiments using the Instron universal testing machine (Instron, Norwood, MA, USA). The surface properties of the coatings were evaluated using Raman, Scanning Electron Microscopy, and non-contact optical profilometer. Results: The friction force values between the DLC-coated brackets and the stainless-steel wires in both dimensions were found to be statistically significantly lower than the friction force between the uncoated brackets and the wires (P < 0.001). The surface roughness value, especially around the slot groove decreased significantly in the coated brackets (P < 0.05). DLC coating layer thickness is approximately 1.0 μm (806 nanometers). Conclusion: DLC coating improves the surface properties of orthodontic brackets, and DLC coating process remarkably reduced the friction force.


2011 ◽  
Vol 4 (1) ◽  
pp. 55-78 ◽  
Author(s):  
Dewan M. Nuruzzaman ◽  
Mohammad A. Chowdhury ◽  
Akira Nakajima ◽  
Mohammad L. Rahaman ◽  
Syed M I. Karim

2017 ◽  
Vol 69 (2) ◽  
pp. 199-207 ◽  
Author(s):  
Jun Liu ◽  
Zhinan Zhang ◽  
Zhe Ji ◽  
Youbai Xie

Purpose This paper aims to investigate the effects of reciprocating frequency, large normal load on friction and wear behavior of hydrogenated diamond-like carbon (H-DLC) coating against Ti-6Al-4V ball under dry and lubricated conditions. Design/methodology/approach The friction and wear mechanisms are analyzed by scanning electron microscope, energy dispersive spectroscopy and Raman spectroscopy. Findings The results show that as reciprocating frequency increases under lubricated conditions, the friction coefficient decreases first and then increases. When the reciprocating frequency is 2.54 Hz, the value of friction coefficient reaches the minimum. The friction reduction is because of the transformation from sp3 to sp2, the formation of transfer layer on Ti-6Al-4V ball and the reduction in viscous friction, whereas the increase of friction coefficient is related to wear. In dry conditions, the friction coefficient is between 0.06 and 0.1. And, the service life of H-DLC coating decreases with the increase in reciprocating frequency and normal load. Research limitations/implications It is confirmed that adding the lubricant could prolong the service life of H-DLC coating and reduce friction and wear efficiently. And, the wear mechanisms under dry and lubricated conditions encompass abrasive wear and adhesive wear. Originality/value The results are helpful for application of diamond-like carbon coating.


2011 ◽  
Vol 492 ◽  
pp. 155-159 ◽  
Author(s):  
Jian Sun ◽  
Wei Zhang ◽  
Zhi Qiang Fu ◽  
Cheng Biao Wang ◽  
Wen Yue ◽  
...  

The combination of diamond-like carbon (DLC) coatings and fluid lubrication is an efficacious method to improve the performance and service life of the friction-pairs working under the severe conditions, but the synergistic effect of DLC coatings and lubricant additives have not been clearly unveiled. The synergistic effect of Cr-doped DLC coatings with different Cr content and the lubricant additives of ZDDP, MoDTC, and T307 on the wear of DLC-coated stainless steel sample was studied, and it was found that the wear resistance of DLC-coated stainless steel sample can be further improve by the combination of DLC coatings and fluid lubrication; doping DLC coatings with Cr at an optimum level is beneficial for the wear resistance of DLC-coated stainless steel sample lubricated by PAO, PAO+ZDDP or PAO + MoDTC, but DLC coatings with a moderate Cr content is harmful to the wear resistance of DLC-coated stainless steel sample lubricated by PAO+T307. The synergistic effect of T307 and undoped DLC coatings or Cr-doped DLC coatings with a Cr content of 23.3 % is the best, while the three studied lubricant additives are harmful for the wear resistance of DLC coatings with a Cr content of 2.4 %.


Sign in / Sign up

Export Citation Format

Share Document