Experimental Research of Grinding TC4 Titanium Alloy Using Green Silicon Carbide Wheel

2011 ◽  
Vol 487 ◽  
pp. 121-125 ◽  
Author(s):  
Xiao Hu Zheng ◽  
Z.Q. Liu ◽  
Guo Qiang Guo ◽  
Qing Long An ◽  
Ming Chen

Titanium alloy is widely used in aerospace and aircraft industries but it is a kind of difficult-to-cut material. In this paper, wet grinding and dry grinding of titanium alloy Ti-6Al-4V using green silicon carbide wheel were investigated. The specific tangential force and force ratio were calculated and surface roughness of machined surfaces was measured. The morphology of machined surface were observed by SEM. The experimental results showed that the specific tangential forces were big. The depth of cutting has greater influence on surface roughness than workpiece speed. The surface roughness of wet grinding was better than dry grinding. Micro cracks were observed on wet grinding. The main reason is the high temperature and quenching cracking.

2009 ◽  
Vol 416 ◽  
pp. 269-273 ◽  
Author(s):  
Wen Guo Huo ◽  
Jiu Hua Xu ◽  
Yu Can Fu

This paper was dedicated to elucidate an investigation of grinding force and workpiece surface of Titanium alloy TA15 in dry grinding by using zirconia alumina belts. The grinding forces were measured by KISTLER 9265B dynamometer. Machined surface morphology and the metallographic structure were observed using 3D viewer microscope. Surface roughness was measured using Mahr Perthometer M1 instrument. The surface microhardness for ground surface was detected by HVS-1000 instrument. The good results were obtained, as follows: low surface roughness, high surface hardness, no microstructural damage, in the form cracks or recrystallisation of the grinding surface, the stable grinding performance with zirconia alumina belts, the small plastic deformation depth of workpiece surface (≤5μm). Therefore belt grinding showed excellent performance during grinding titanium alloy.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110112
Author(s):  
Li Xun ◽  
Wang Ziming ◽  
Yang Shenliang ◽  
Guo Zhiyuan ◽  
Zhou Yongxin ◽  
...  

Titanium alloy Ti1023 is a typical difficult-to-cut material. Tool wear is easy to occur in machining Ti1023, which has a significant negative effect on surface integrity. Turning is one of the common methods to machine Ti1023 parts and machined surface integrity has a direct influence on the fatigue life of parts. To control surface integrity and improve anti-fatigue behavior of Ti1023 parts, it has an important significance to study the influence of tool wear on the surface integrity and fatigue life of Ti1023 in turning. Therefore, the effect of tool wear on the surface roughness, microhardness, residual stress, and plastic deformation layer of Ti1023 workpieces by turning and low-cycle fatigue tests were studied. Meanwhile, the influence mechanism of surface integrity on anti-fatigue behavior also was analyzed. The experimental results show that the change of surface roughness caused by worn tools has the most influence on anti-fatigue behavior when the tool wear VB is from 0.05 to 0.25 mm. On the other hand, the plastic deformation layer on the machined surface could properly improve the anti-fatigue behavior of specimens that were proved in the experiments. However, the higher surface roughness and significant surface defects on surface machined utilizing the worn tool with VB = 0.30 mm, which leads the anti-fatigue behavior of specimens to decrease sharply. Therefore, to ensure the anti-fatigue behavior of parts, the value of turning tool wear VB must be rigorously controlled under 0.30 mm during finishing machining of titanium alloy Ti1023.


2019 ◽  
Vol 825 ◽  
pp. 92-98
Author(s):  
Nakatsuka Nagatoshi ◽  
Sumito Toyokawa ◽  
Atsushi Kusakabe ◽  
Shinya Nakatsukasa ◽  
Hiroyuki Sasahara

The objective of this paper is to clarify the effect of grinding surface characteristics in the grinding of a titanium alloy with a coolant supply from the inner side of the grinding wheel. In this paper, we selected a white aluminum oxide (WA) vitrified bonded grinding wheel and a green silicon carbide (GC) vitrified bonded grinding wheel, and compared their grinding characteristics. As a result, in the case of the GC vitrified bonded grinding wheel, the surface roughness decreased by about 54% and the compressive residual stress increased by about 128%.


Author(s):  
Ze Yu ◽  
Dunwen Zuo ◽  
Yuli Sun ◽  
Guohua Li ◽  
Xuemei Chen ◽  
...  

To simultaneously optimize the surface quality and machining efficiency of the electrical discharge machining (EDM) processes used to produce titanium alloy quadrilateral group small hole parts, a combined “EDM + AFM” machining technology is proposed in this paper as an efficient and high-quality machining approach. In the proposed method, TC4 titanium alloy is first machined using the EDM process with graphite electrodes and the abrasive flow machining (AFM) process is then used to finish the machined surface. The effects of various electrical parameters on EDM-derived surface quality and improvements in EDM-derived quality under the application of AFM were assessed and, using the final surface roughness as a constraint condition, the effects of various combinations of EDM and “EDM + AFM” on efficiency were studied. The results revealed that the thickness and surface roughness of the superficial recast layer of the TC4 titanium alloy increase with both current and pulse width; in particular, increasing these parameters can increase the surface roughness by two to three grades. Following AFM, the alloy has a more uniform hardness distribution and the surface stress state changes from tensile to compressive stress, indicating that the combined “EDM + AFM” machining scheme can significantly enhance the surface quality of EDM-produced titanium alloy quadrilateral small group holes. The combined scheme achieves a balancing point beyond which increasing the roughness or the number of machining holes enhances either the machining efficiency or the machining surface quality. In the case of typical titanium alloy quadrilateral group small hole parts, the combined machining process can improve the finishing efficiency and total machining efficiency by 71.2% and 25.36%, respectively.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Yunn-Shiuan Liao ◽  
Tsung-Hsien Li ◽  
Yi-Chen Liu

Abstract Application of liquid carbon dioxide to improve cutting performance in micro-end milling of Ti-6Al-4V titanium alloy was proposed in this study. It was found that the machined roughness decreased with the cutting speed as observed in the conventional cutting, when a 0.5 mm diameter end milling cutter was used in dry cutting. But, the tiny and shattered chips produced by the use of 0.3 mm diameter cutter could adhere on the machined surface and deteriorate surface finish, if the cutting speed was higher than 40 m/min. Cutting temperature was effectively decreased by applying liquid carbon dioxide during micromilling, which in turn reduced the amount of chips adhering on the machined surface and lowered flank wear. The surface roughness Ra at a cutting speed of 70 m/min was improved from 0.09 μm under dry cutting to 0.04 μm under the liquid carbon dioxide assisted cutting condition. And there were no flank wear and very few burrs left on the machined surface for the condition used in the experiment. The height of the burrs was only 25% of that under dry cutting. More, minimum quantity lubrication (MQL) was proposed to be applied together with the liquid carbon dioxide to enhance lubrication effect. It was noted that the machined surface roughness was further decreased by 15% as compared with that when the liquid carbon dioxide was applied alone. The height of burrs was reduced from 32 μm to 16 μm.


2020 ◽  
Vol 4 (4) ◽  
pp. 114
Author(s):  
Akira Mizobuchi ◽  
Atsuyoshi Tashima

This study addresses the wet grinding of large stainless steel sheets, because it is difficult to subject them to dry grinding. Because stainless steel has a low thermal conductivity and a high coefficient of thermal expansion, it easily causes grinding burn and thermal deformation while dry grinding on the wheel without applying a cooling effect. Therefore, wet grinding is a better alternative. In this study, we made several types of grinding wheels, performed the wet grinding of stainless steel sheets, and identified the wheels most suitable for the process. As such, this study developed a special accessory that could be attached to a wet grinding workpiece. The attachment can maintain constant pressure, rotational speed, and supply grinding fluid during work. A set of experiments was conducted to see how some grinding wheels subjected to some grinding conditions affected the surface roughness of a workpiece made of a stainless steel sheet (SUS 304, according to Japanese Industrial Standards: JIS). It was found that the roughness of the sheet could be minimized when a polyvinyl alcohol (PVA) grinding wheel was used as the grinding wheel and tap water was used as the grinding fluid at an attachment pressure of 0.2 MPa and a rotational speed of 150 rpm. It was shown that a surface roughness of up to 0.3 μm in terms of the arithmetic average height could be achieved if the above conditions were satisfied during wet grinding. The final surface roughness was 0.03 μm after finish polishing by buffing. Since the wet grinding of steel has yet to be studied in detail, this article will serve as a valuable reference.


2017 ◽  
Vol 872 ◽  
pp. 43-48 ◽  
Author(s):  
Xin Huang ◽  
Qian Bai ◽  
Yong Tao Li ◽  
Bi Zhang

Surface finish plays a critical role in functional performance of machined components. This study investigates machining finish of Ti-6Al-4V alloy prepared by Additive Manufacturing (AM) with a series of slot-milling experiments. The study compares the machined AMed part with that made of the conventional wrought Ti-6Al-4V. The microstructure of AMed parts is acicular α and Widmanstatten α lath structures compared to lamellar α structure of that in the wrought parts. Due to the unique microstructure from AM process, the AMed parts present higher strength and lower ductility. Therefore, a lower surface roughness is obtained in the milling of AMed parts compared to its counterpart of wrought parts. In addition, the machined surface of AMed parts possesses a topography of discontinued ridges. It is believed that the topography is due to low ductility of AMed part. The results show that the machined AMed part presents better surface finish. The study provides a guidance to optimization of machining parameters for AMed Ti-6Al-4V alloys.


2021 ◽  
Vol 24 (2) ◽  
pp. 9-12
Author(s):  
Zuzana Grešová ◽  
◽  
Peter Ižol ◽  
Ildikó Maňková ◽  
Marek Vrabe ◽  
...  

The article deals with the comparison and evaluation of finishing cutter path strategies when applied to one of the difficult to cut material such as Ti-alloy. The titanium alloy has been increasingly used for high performance application for oil and gas, aerospace, energy, medical and automotive industries. The importance of milling strategies outgoing from their impact on the economic aspects of production, realized using CNC machines. A planar sample was designed for the purposes of the experiment, enabling finishing cutter path strategies for shaped surfaces. Three cutting strategies were involved and compared- spiral, constant Z and line feed. For assessment of the effect of the cutting strategies three different feed rate were used. Comparison of simulated cutter path strategies and machined surface were visually inspected as well as measured surface roughness were evaluated. The constant Z cutting path strategy was found as suitable cutting strategy from point of view of surface roughness.


2008 ◽  
Vol 53-54 ◽  
pp. 305-310 ◽  
Author(s):  
Guo Sheng Geng ◽  
Jiu Hua Xu

Surface integrity has a great effect on the fatigue property of titanium alloy. The surface integrity and fatigue property of a high speed milled Ti-6.5Al-2Zr-1Mo-1V (TA15) titanium alloy were investigated in this research. The main objective of this paper is to study the influence of milling speed on the surface integraty and fatigue property of the machined part. The surface roughness, work hardening, metallurgical structure and residual stress of the machined surface were studied in a cutting speed range of from 50m/min to 300m/min. To verify the relationship between cutting speed and the surface integrity of machined surface, the fatigue property of titanium alloy specimens milled at four different cutting speeds ranging from 50 to 200m/min were compared at two stress levels. This research shows that the cutting speed has little effect on the work hardening, metallurgical structure and residual stress, but the surface roughness decreases with the increasing cutting speed. Therefore, increasing milling speed has a positive effect on the surface integrity and fatigue property of the machined surface.


Sign in / Sign up

Export Citation Format

Share Document