scholarly journals THE EFFECT OF CUTTER PATH STRATEGIES ON SURFACE ROUGHNESS WHEN MACHINING TITANIUM ALLOY

2021 ◽  
Vol 24 (2) ◽  
pp. 9-12
Author(s):  
Zuzana Grešová ◽  
◽  
Peter Ižol ◽  
Ildikó Maňková ◽  
Marek Vrabe ◽  
...  

The article deals with the comparison and evaluation of finishing cutter path strategies when applied to one of the difficult to cut material such as Ti-alloy. The titanium alloy has been increasingly used for high performance application for oil and gas, aerospace, energy, medical and automotive industries. The importance of milling strategies outgoing from their impact on the economic aspects of production, realized using CNC machines. A planar sample was designed for the purposes of the experiment, enabling finishing cutter path strategies for shaped surfaces. Three cutting strategies were involved and compared- spiral, constant Z and line feed. For assessment of the effect of the cutting strategies three different feed rate were used. Comparison of simulated cutter path strategies and machined surface were visually inspected as well as measured surface roughness were evaluated. The constant Z cutting path strategy was found as suitable cutting strategy from point of view of surface roughness.

2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110112
Author(s):  
Li Xun ◽  
Wang Ziming ◽  
Yang Shenliang ◽  
Guo Zhiyuan ◽  
Zhou Yongxin ◽  
...  

Titanium alloy Ti1023 is a typical difficult-to-cut material. Tool wear is easy to occur in machining Ti1023, which has a significant negative effect on surface integrity. Turning is one of the common methods to machine Ti1023 parts and machined surface integrity has a direct influence on the fatigue life of parts. To control surface integrity and improve anti-fatigue behavior of Ti1023 parts, it has an important significance to study the influence of tool wear on the surface integrity and fatigue life of Ti1023 in turning. Therefore, the effect of tool wear on the surface roughness, microhardness, residual stress, and plastic deformation layer of Ti1023 workpieces by turning and low-cycle fatigue tests were studied. Meanwhile, the influence mechanism of surface integrity on anti-fatigue behavior also was analyzed. The experimental results show that the change of surface roughness caused by worn tools has the most influence on anti-fatigue behavior when the tool wear VB is from 0.05 to 0.25 mm. On the other hand, the plastic deformation layer on the machined surface could properly improve the anti-fatigue behavior of specimens that were proved in the experiments. However, the higher surface roughness and significant surface defects on surface machined utilizing the worn tool with VB = 0.30 mm, which leads the anti-fatigue behavior of specimens to decrease sharply. Therefore, to ensure the anti-fatigue behavior of parts, the value of turning tool wear VB must be rigorously controlled under 0.30 mm during finishing machining of titanium alloy Ti1023.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Yunn-Shiuan Liao ◽  
Tsung-Hsien Li ◽  
Yi-Chen Liu

Abstract Application of liquid carbon dioxide to improve cutting performance in micro-end milling of Ti-6Al-4V titanium alloy was proposed in this study. It was found that the machined roughness decreased with the cutting speed as observed in the conventional cutting, when a 0.5 mm diameter end milling cutter was used in dry cutting. But, the tiny and shattered chips produced by the use of 0.3 mm diameter cutter could adhere on the machined surface and deteriorate surface finish, if the cutting speed was higher than 40 m/min. Cutting temperature was effectively decreased by applying liquid carbon dioxide during micromilling, which in turn reduced the amount of chips adhering on the machined surface and lowered flank wear. The surface roughness Ra at a cutting speed of 70 m/min was improved from 0.09 μm under dry cutting to 0.04 μm under the liquid carbon dioxide assisted cutting condition. And there were no flank wear and very few burrs left on the machined surface for the condition used in the experiment. The height of the burrs was only 25% of that under dry cutting. More, minimum quantity lubrication (MQL) was proposed to be applied together with the liquid carbon dioxide to enhance lubrication effect. It was noted that the machined surface roughness was further decreased by 15% as compared with that when the liquid carbon dioxide was applied alone. The height of burrs was reduced from 32 μm to 16 μm.


2017 ◽  
Vol 872 ◽  
pp. 43-48 ◽  
Author(s):  
Xin Huang ◽  
Qian Bai ◽  
Yong Tao Li ◽  
Bi Zhang

Surface finish plays a critical role in functional performance of machined components. This study investigates machining finish of Ti-6Al-4V alloy prepared by Additive Manufacturing (AM) with a series of slot-milling experiments. The study compares the machined AMed part with that made of the conventional wrought Ti-6Al-4V. The microstructure of AMed parts is acicular α and Widmanstatten α lath structures compared to lamellar α structure of that in the wrought parts. Due to the unique microstructure from AM process, the AMed parts present higher strength and lower ductility. Therefore, a lower surface roughness is obtained in the milling of AMed parts compared to its counterpart of wrought parts. In addition, the machined surface of AMed parts possesses a topography of discontinued ridges. It is believed that the topography is due to low ductility of AMed part. The results show that the machined AMed part presents better surface finish. The study provides a guidance to optimization of machining parameters for AMed Ti-6Al-4V alloys.


Materials ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2246 ◽  
Author(s):  
Peter Šugár ◽  
Jaroslav Kováčik ◽  
Jana Šugárová ◽  
Barbora Ludrovcová

The paper deals with the experimental study of laser beam micromachining of the powder metallurgy processed Ti compacts applying the industrial grade fibre nanosecond laser operating at the wavelength of 1064 nm. The influence of the laser energy density on the surface roughness, surface morphology and surface elements composition was investigated and evaluated by means of surface roughness measurement, scanning electron microscopy (SEM), energy dispersive X-Ray spectroscopy (EDS) and X-ray diffraction (XRD) analysis. The different laser treatment parameters resulted in the surfaces of very different characteristics of the newly developed biocompatible material prepared by advanced low temperature technology of hydride dehydride (HDH) titanium powder compactation. The results indicate that the laser pulse energy has remarkable effects on the machined surface characteristics which are discussed from the point of view of application in dental implantology.


2008 ◽  
Vol 53-54 ◽  
pp. 305-310 ◽  
Author(s):  
Guo Sheng Geng ◽  
Jiu Hua Xu

Surface integrity has a great effect on the fatigue property of titanium alloy. The surface integrity and fatigue property of a high speed milled Ti-6.5Al-2Zr-1Mo-1V (TA15) titanium alloy were investigated in this research. The main objective of this paper is to study the influence of milling speed on the surface integraty and fatigue property of the machined part. The surface roughness, work hardening, metallurgical structure and residual stress of the machined surface were studied in a cutting speed range of from 50m/min to 300m/min. To verify the relationship between cutting speed and the surface integrity of machined surface, the fatigue property of titanium alloy specimens milled at four different cutting speeds ranging from 50 to 200m/min were compared at two stress levels. This research shows that the cutting speed has little effect on the work hardening, metallurgical structure and residual stress, but the surface roughness decreases with the increasing cutting speed. Therefore, increasing milling speed has a positive effect on the surface integrity and fatigue property of the machined surface.


2010 ◽  
Vol 33 ◽  
pp. 246-250
Author(s):  
Wei Zhang ◽  
Min Li Zheng ◽  
Ming Ming Cheng ◽  
Wen Yong Shi

By high speed turning experiment of aerospace engine titanium alloy membrane discs, it researches cutting parameters influence on machined surface roughness of titanium alloy membrane discs, meanwhile measures and analyzes machined surface topography. Machined surface roughness multi-linear regression empirical model of high speed end-surface turning titanium alloy membrane discs is established. Using cutting parameter combination obtained from cutting parameter optimization makes process verification experiment of high speed turning titanium alloy membrane discs. The results show that the established machined surface roughness empirical model of high speed turning titanium alloy membrane discs is credible in statistics, and the process verifying experiment effect is good by using optimized cutting parameters.


2014 ◽  
Vol 592-594 ◽  
pp. 38-42 ◽  
Author(s):  
S. Samsudeensadham ◽  
Vijayan Krishnaraj

The heat produced in metal cutting process is one of the most critical issue in machining of titanium alloys. High temperature in metal cutting degrades the tool life, surface integrity, size accuracy and machining efficiency dramatically. The temperature generated during end milling of titanium alloy, has been measured using Thermo camera. Surface roughness plays a vital role in evaluating and measuring the quality of the machined surface. During the experiments, cutting speed and feed rate have been changed to analyse the effect of temperature and surface roughness. It is observed that cutting speed has the greater effect on temperature and surface roughness during end milling of titanium alloy. The regression equations generated have better fit which can be used for optimization.


2013 ◽  
Vol 274 ◽  
pp. 196-199
Author(s):  
Wei Zhang ◽  
Min Li Zheng ◽  
Ying Bin Li

titanium alloy cutting force testing experiment of end-surface turning is made, and spectrum character is analyzed by obtained data of cutting force experiment, and ten the influencing rule of cutting parameter on cutting force character is discovered; using the similarity between tools vibration character and cutting force spectrum character, and based on obtained data of machined surface roughness testing experiment, the two characteristic parameters of vibration frequency and amplitude value relative to work piece is calculated, and the relationship curve between cutting parameters and tools vibration character parameter is established is this paper.


2011 ◽  
Vol 487 ◽  
pp. 121-125 ◽  
Author(s):  
Xiao Hu Zheng ◽  
Z.Q. Liu ◽  
Guo Qiang Guo ◽  
Qing Long An ◽  
Ming Chen

Titanium alloy is widely used in aerospace and aircraft industries but it is a kind of difficult-to-cut material. In this paper, wet grinding and dry grinding of titanium alloy Ti-6Al-4V using green silicon carbide wheel were investigated. The specific tangential force and force ratio were calculated and surface roughness of machined surfaces was measured. The morphology of machined surface were observed by SEM. The experimental results showed that the specific tangential forces were big. The depth of cutting has greater influence on surface roughness than workpiece speed. The surface roughness of wet grinding was better than dry grinding. Micro cracks were observed on wet grinding. The main reason is the high temperature and quenching cracking.


2016 ◽  
Vol 63 (4) ◽  
pp. 531-548 ◽  
Author(s):  
◽  
B.P. Agrawal ◽  
Iqbal A. Khan ◽  
Zahid A. Khan

Abstract Titanium alloy (Ti-6Al-4V) has been extensively used in aircraft turbine-engine components, aircraft structural components, aerospace fasteners, high performance automotive parts, marine applications, medical devices and sports equipment. However, wide-spread use of this alloy has limits because of difficulty to machine it. One of the major difficulties found during machining is development of poor quality of surface in the form of higher surface roughness. The present investigation has been concentrated on studying the effects of cutting parameters of cutting speed, feed rate and depth of cut on surface roughness of the product during turning of titanium alloy. Box-Behnken experimental design was used to collect data for surface roughness. ANOVA was used to determine the significance of the cutting parameters. The model equation is also formulated to predict surface roughness. Optimal values of cutting parameters were determined through response surface methodology. A 100% desirability level in the turning process for economy was indicated by the optimized model. Also, the predicted values that were obtained through regression equation were found to be in close agreement to the experimental values.


Sign in / Sign up

Export Citation Format

Share Document