Contact Angle Measurement and Its Application To Sol-Gel Processing

1994 ◽  
Vol 346 ◽  
Author(s):  
D. J. Stein ◽  
A. Maskara ◽  
S. Hæreid ◽  
J. Anderson ◽  
D. M. Smith

ABSTRACTCapillary stresses during drying that result from the contact angle of a liquid solvent to a gel, surface tension, and pore size have an immense effect on the dried gel. The extent to which the gel shrinks is a balance between the capillary stress and the solid matrix strength. The dynamic contact angles and surface tensions of various solvents commonly employed in sol-gel processing on silica gels of various surface chemistries have been evaluated. A thin, dense coating of silica gel was formed by dip coating a standard glass slide in an acid catalyzed silica sol and drying. Some of the sample surfaces were organically modified. Dynamic contact angles were determined using a modified Wilhelmy plate technique. Solvent surface tensions were determined using the De Nouy ring technique. The bulk modulus of wet gels were determined with a three point bend experiment. We have found that contrary to previous investigators, who attributed different bulk densities obtained after drying from various alcohols to contact angles variations, gel shrinkage during drying is actually due to slightly different surface tensions and degrees of depolymerization of the gel network.

2019 ◽  
Vol 798 ◽  
pp. 134-139
Author(s):  
Usanee Pantulap ◽  
Benjamon Petchareanmongkol ◽  
Waraporn Kaewdang ◽  
Kanit Tapasa

The objective of this project was to develop the hydrophobic film for self-cleaning glasses. The effects of octyltriethoxysilane (OTES) additions to hydrolysis of tetraethylorthosilicate (TEOS) on hydrophobic and optically transparent properties were studied. The film was prepared by sol-gel method from the precursors namely, TESO, OTES, isopropanol alcohol (IPA), and deionized water (DI). The sols for coating were obtained with TEOS/OTES ratio of 50:50 to 99:1. The sols were deposited on a commercial glass and dried at 60oC for an hour. After drying, the film properties were characterized by fourier transform infrared spectroscopy (FTIR), UV-VIS Spectrophotometer, x-Ray Diffractometer (XRD), atomic force microscope (AFM), optical microscopy and contact angle meter. It was found that contact angles of the hybrid films increased with the OTES addition, reaching a maximum at 10 wt.%, and the contact angle values were the same as for further addition. The light transmittance was rather stable with increasing amounts of OTES. For the optimized condition, the water contact angle of 108o and light transmittance of 91%, was obtained with TEOS/OTES ratio of 90:10.


2012 ◽  
Vol 512-515 ◽  
pp. 1028-1031 ◽  
Author(s):  
Ya Wei Hu ◽  
Hui Rong He ◽  
Yang Min Ma

Nano-structrued SiO2 coating was prepared on metal substrate by sol-gel processing and the dip-coating technique using tetraethyl orthosilicate (TEOS) as precursor. And the superhydrophobicic SiO2 coating was obtained after modified with fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OCH3)3). The morphology of obtained SiO2 coating was characterized by scanning electronic microscope (SEM). And the superhydrophobicity of SiO2 coating modified with FAS was characterized by contact angle meter. It was observed that the SiO2 coating showed superhydrophobicity with water contact angle 154.7° after modified with fluoroalkylsilane, and the superhydrophobicity was corrosion-resistance to acid or alkali to some extant.


2017 ◽  
Vol 751 ◽  
pp. 137-142
Author(s):  
S.Tipawan Khlayboonme ◽  
Warawoot Thowladda

TiO2 thin films coated on glass substrates for self-cleaning applications were prepared by sol-gel dip-coating technique. The influence of annealing temperature and air exposure time on wettability was investigated by a water contact-angle measurement. Thermal annealing at temperatures of 100, 200 and 300 °C in air were conducted to the films. Surface morphology of the films was observed by FE-SEM. Elemental distribution and optical properties were examined by EDX mapping and UV-Vis transmission spectroscopy, respectively. Atomic bonding was confirmed by FTIR. The contact angle reached a maximum when the films were annealed at 200 °C. The contact angles of the as-synthesized films were 61.4±2.7°. During storage in air for 20 days, the contact angles increased to 143.1±2.1°. The films were further reannealed with 100 °C for 20 min, the contact angles were enhanced to 153.1±1.3°. The association of contact angle among the surface morphology, elemental distribution and atomic bonding of the films will be discussed.


2002 ◽  
Vol 17 (6) ◽  
pp. 1543-1549 ◽  
Author(s):  
S. Sathyamurthy ◽  
M. Paranthaman ◽  
T. Aytug ◽  
B. W. Kang ◽  
P. M. Martin ◽  
...  

Sol-gel processing of La2Zr2O7 (LZO) buffer layers on biaxially textured Ni–1.7% Fe–3% W alloy substrates using a continuous reel-to-reel dip-coating unit has been studied. The epitaxial LZO films obtained have a strong cube texture and uniform microstructure. The effects of increasing the annealing speed on the texture, microstructure, and carbon content retained in the film were studied. On top of the LZO films, epitaxial layers of yttria-stabilized zirconia and Ceria (CeO2) were deposited using rf sputtering, and YBa2Cu3Ox (YBCO) films were then deposited using pulsed laser deposition. Critical current densities (Jc) of 1.9 MA/cm2 at 77 K and self-field and 0.34 MA/cm2at 77 K and 0.5 T have been obtained on these films. These values are comparable to those obtained on YBCO films deposited on all-vacuum deposited buffer layers and the highest ever obtained using solution seed layers.


2020 ◽  
Vol 20 (3) ◽  
pp. 1780-1789 ◽  
Author(s):  
Priyanka Katiyar ◽  
Shraddha Mishra ◽  
Anurag Srivastava ◽  
N. Eswara Prasad

TiO2, SiO2 and their hybrid nanocoatings are prepared on inherent flame retardant textile substrates from titanium(IV)iso-proproxide (TTIP) and tetraethoxysilane (TEOS) precursors using a sol–gel process followed by hydrothermal treatment. The coated samples are further functionalized by hexadecyltrimethoxysilane (HDTMS) to impart superhydrophobicity. Sample characterization of the nanosols, nanoparticles and coated samples are investigated using, X-ray diffractometer, transmission electron microscopy, scanning electron microscopy, UV-Vis spectroscopy, contact angle measurement. Stain degradation test under mild UV irradiation shows almost 54% degradation of coffee stain within 4 hours measured by Spectrophotometer. UV-Vis Absorption Spectroscopy demonstrates complete degradation of methyl orange colorant within 3 hours. Hybrid nanosol coated and HDTMS modified inherent flame retardant polyester surfaces show apparent water contact angle as ~145°, which is much closer to proximity of superhydrophobic surfaces. Thus, the novelty of present work is, by using sol–gel technique, a bi-functional textile surface has been developed which qualifies the very specific requirements of protective clothing like self-cleaning property (imparted by TiO2 nanoparticles) and superhydrophobicity (imparted by SiO2 nanoparticles and further surface modification by HDTMS), which are entirely contradictory in nature, in a single fabric itself. Thus developed textile surfaces also possess the other attributes of protective clothing like flame retardancy and air permeability.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 405
Author(s):  
Nicola Suzzi ◽  
Giulio Croce

The bifurcation analysis of a film falling down an hybrid surface is conducted via the numerical solution of the governing lubrication equation. Instability phenomena, that lead to film breakage and growth of fingers, are induced by multiple contamination spots. Contact angles up to 75∘ are investigated due to the full implementation of the free surface curvature, which replaces the small slope approximation, accurate for film slope lower than 30∘. The dynamic contact angle is first verified with the Hoffman–Voinov–Tanner law in case of a stable film down an inclined plate with uniform surface wettability. Then, contamination spots, characterized by an increased value of the static contact angle, are considered in order to induce film instability and several parametric computations are run, with different film patterns observed. The effects of the flow characteristics and of the hybrid pattern geometry are investigated and the corresponding bifurcation diagram with the number of observed rivulets is built. The long term evolution of induced film instabilities shows a complex behavior: different flow regimes can be observed at the same flow characteristics under slightly different hybrid configurations. This suggest the possibility of controlling the rivulet/film transition via a proper design of the surfaces, thus opening the way for relevant practical application.


2004 ◽  
Vol 848 ◽  
Author(s):  
Andrew W. Jackson ◽  
Andrew L. Hector

ABSTRACTThere is an increasing interest in sol-gel synthesis of nitrides. The ability to deposit films of these materials by dip- or spin-coating will increase the range of applications in which they are viable and is an important step toward general sol-gel processing of nitride materials.With transition metals, the ammono based analogue of the well established alkoxy route to gels is inherently difficult to control. Due to the basicity of the system, the overwhelming tendency is of the starting materials to favour particle growth which results in a precipitate rather than a stable emulsion, unless both environment and synthetic pathway are carefully controlled. Hence reports to date of sol-gel routes to nitrides describe production of powders. We report work on a sol-gel route to titanium nitride with the ammonolysis of titanium amides controlled by temperature and chemical moderators, resulting in stable emulsions useful for dip-coating.


2015 ◽  
Vol 1131 ◽  
pp. 237-241 ◽  
Author(s):  
Akkarat Wongkaew ◽  
Chanida Soontornkallapaki ◽  
Naritsara Amhae ◽  
Wichet Lamai

This work aims to study the effect of ZnO containing in TiO2/SiO2 film on the superhydrophilic property after exposed to different types of light. The metal solutions were prepared by sol-gel technique and the film was deposited on glass slides by dip coating method. The parameter studied was the amount of ZnO in the TiO2/SiO2 film. The contents of ZnO were 5-20% weight (increased by 5%). The amount of TiO2 was constant at 30% weight. The obtained films were analyzed for their roughness. The results indicated that film roughness changed according to the ZnO contents. With 5%ZnO in the thin film, the roughness was 0.726 nm while 20%ZnO obtained the roughness of 2.128 nm. UV-Vis spectrophotometer was used for measuring of transmittance of films. At wavelength of 550 nm, the transmittances of each film were greater than 90%. Band gap energy of each film was calculated from the transmittance data. It was found that the average band gap energy of the films was 2.47 eV. Then, the films contained various amount of ZnO were grouped into 2 sets. The first set was exposed to visible light while the other set was exposed to UV. The duration of exposure was 5 hr. Both sets of films after exposed to any light were kept in a black box controlled relative humidity of 85%. Each film was measured contact angle every day. It was found that the 30%TiO2/5%Zn/SiO2 film exposed to visible light showed the best superhydrophilic property. The contact angle was about 0-5° within 3 days. This may due to the reduction of band gap energy in the presence of ZnO in TiO2/SiO2 films to 2.41 eV and the roughness of the film.


Sign in / Sign up

Export Citation Format

Share Document