Stabilization Accuracy Measurement and Controller On-Line Debugging of Optical-Electro Stabilization System

2012 ◽  
Vol 522 ◽  
pp. 895-901
Author(s):  
Mo Hei ◽  
Qing Kun Zhou ◽  
Ya Fei Lu ◽  
Da Peng Fan

In order to reduce the effect of carrier disturbance on the stability of line of sight (LOS) of the optical-electro stabilization system (OESS), a stabilization accuracy model of stabilization loop is built, and the main factors affecting the stabilization accuracy of stabilization loop in OESS are analyzed. Based on the on-line semi-physical simulation theory, a dSPACE measurement system of the LOS stabilization accuracy is designed to measure the LOS stabilization accuracy of the OESS, and the controller of stabilization loop is designed on the basis of the measurement data on-line conveniently. Experimental results show that the stabilization accuracy of the OESS with this method is 0.24mrad which is met the requirement. The novel method of stabilization accuracy measurement and controller on-line debugging for OESS can achieve higher stabilization accuracy and a greater efficiency over the classic method, and also indicates that this novel method is efficient and should be effective on further stabilization accuracy research of OESS.

2015 ◽  
Vol 727-728 ◽  
pp. 752-756
Author(s):  
Zhong Yi Cao ◽  
Xin Ming Liu ◽  
Wan Rong Wu

There are some defects in the traditional over-running load hydraulic system, such as velocity control is poor and prone to velocity jitter, etc. In order to improve these weaknesses, the components and work principle of the separate meter in and separate meter out (SMISMO) were introduced and the actuator’s feature were analyzed , the simulation model of hydraulic studied system was built, the factors affecting the stability of the system are discussed in this paper. Simulation and experiment showed that the novel control system possessed higher velocity control precise and good stable characteristics.


2014 ◽  
Vol 536-537 ◽  
pp. 1026-1031
Author(s):  
Jun Cai ◽  
Rui Liu

For the problem that the stability of surface Electromyographic EMG(sEMG) based human-machine interface(HMI) declines as the muscle fatigue takes place, an improved incremental training algorithm for online support vector machine(SVM) is proposed. This paper study the changes of sEMG when muscle fatigue occurs by the method of continuous wavelet transform, and then apply the improved online SVM for sEMG classification. The novel method adjusts the parameters of SVM model to adapt itself based on the changes of sEMG signals and the training data is conditionally selected and forgot. Experiment results show that the presented algorithm performs high modeling precision and training speed is increased. Furthermore, this method effectively overcomes the influence of muscle fatigue during long-term operating sEMG based HMI.


2017 ◽  
Author(s):  
Nikola Aulig

The work at hand addresses engineers, designers and scientists who face the challenging Task of devising concept structures in a virtual product design process that involves more and more sophisticated physical simulations. Using methods of evolutionary optimization and machine learning, this dissertation explores a novel generic topology optimization algorithm, which is able to provide concept designs even for problems involving complex, black-box simulations. A self-contained learning component utilizes physical simulation data to generate a search direction. The generic topology optimization is studied in conjunction with statistical models such as neural networks or support vector regression. In empirical experiments, the novel method reproduces reference structures with Minimum compliance and provides innovative solutions in the domain of vehicle crashworthiness optimization. Contents Symbols and Abbreviations XIV Abstract XVII Zusammenfassung XVIII 1 Introduction 1 2 Fundamentals...


Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4073 ◽  
Author(s):  
Wenhao Yang ◽  
Yue Liu ◽  
Fanming Liu

The Global Navigation Satellite Systems (GNSS) becomes the primary choice for device localization in outdoor situations. At the same time, many applications do not require precise absolute Earth coordinates, but instead, inferring the geometric configuration information of the constituent nodes in the system by relative positioning. The Real-Time Kinematic (RTK) technique shows its efficiency and accuracy in calculating the relative position. However, when the cycle slips occur, the RTK method may take a long time to obtain a fixed ambiguity value, and the positioning result will be a “float” solution with a low meter accuracy. The novel method presented in this paper is based on the Relative GNSS Tracking Algorithm (Regtrack). It calculates the changes in the relative baseline between two receivers without an ambiguity estimation. The dead reckoning method is used to give out the relative baseline solution while a parallel running Extended Kalman Filter (EKF) method reinitiates the relative baseline when too many validation failures happen. We conducted both static and kinematic tests to assess the performance of the new methodology. The experimental results show that the proposed strategy can give accurate millimeter-scale solutions of relative motion vectors in adjacent two epochs. The relative baseline solution can be sub-decimeter level with or without the base station is holding static. In the meantime, when the initial tracking point and base station coordinates are precisely obtained, the tracking result error can be only 40 cm away from the ground truth after a 25 min drive test in an urban environment. The efficiency test shows that the proposed method can be a real-time method, the time that calculates one epoch of measurement data is no more than 80 ms and is less than 10 ms for best results. The novel method can be used as a more robust and accurate ambiguity free tracking approach for outdoor applications.


TAPPI Journal ◽  
2012 ◽  
Vol 11 (10) ◽  
pp. 9-17
Author(s):  
ALESSANDRA GERLI ◽  
LEENDERT C. EIGENBROOD

A novel method was developed for the determination of linting propensity of paper based on printing with an IGT printability tester and image analysis of the printed strips. On average, the total fraction of the surface removed as lint during printing is 0.01%-0.1%. This value is lower than those reported in most laboratory printing tests, and more representative of commercial offset printing applications. Newsprint paper produced on a roll/blade former machine was evaluated for linting propensity using the novel method and also printed on a commercial coldset offset press. Laboratory and commercial printing results matched well, showing that linting was higher for the bottom side of paper than for the top side, and that linting could be reduced on both sides by application of a dry-strength additive. In a second case study, varying wet-end conditions were used on a hybrid former machine to produce four paper reels, with the goal of matching the low linting propensity of the paper produced on a machine with gap former configuration. We found that the retention program, by improving fiber fines retention, substantially reduced the linting propensity of the paper produced on the hybrid former machine. The papers were also printed on a commercial coldset offset press. An excellent correlation was found between the total lint area removed from the bottom side of the paper samples during laboratory printing and lint collected on halftone areas of the first upper printing unit after 45000 copies. Finally, the method was applied to determine the linting propensity of highly filled supercalendered paper produced on a hybrid former machine. In this case, the linting propensity of the bottom side of paper correlated with its ash content.


2020 ◽  
Vol 14 (2) ◽  
pp. 108-125
Author(s):  
Apoorva Singh ◽  
Nimisha

: Skin cancer, among the various kinds of cancers, is a type that emerges from skin due to the growth of abnormal cells. These cells are capable of spreading and invading the other parts of the body. The occurrence of non-melanoma and melanoma, which are the major types of skin cancers, has increased over the past decades. Exposure to ultraviolet radiations (UV) is the main associative cause of skin cancer. UV exposure can inactivate tumor suppressor genes while activating various oncogenes. The conventional techniques like surgical removal, chemotherapy and radiation therapy lack the potential for targeting cancer cells and harm the normal cells. However, the novel therapeutics show promising improvements in the effectiveness of treatment, survival rates and better quality of life for patients. Different methodologies are involved in the skin cancer therapeutics for delivering the active ingredients to the target sites. Nano carriers are very efficient as they have the ability to improve the stability of drugs and further enhance their penetration into the tumor cells. The recent developments and research in nanotechnology have entitled several targeting and therapeutic agents to be incorporated into nanoparticles for an enhancive treatment of skin cancer. To protect the research works in the field of nanolipoidal systems various patents have been introduced. Some of the patents acknowledge responsive liposomes for specific targeting, nanocarriers for the delivery or co-delivery of chemotherapeutics, nucleic acids as well as photosensitizers. Further recent patents on the novel delivery systems have also been included here.


Author(s):  
Zaheer Ahmed ◽  
Alberto Cassese ◽  
Gerard van Breukelen ◽  
Jan Schepers

AbstractWe present a novel method, REMAXINT, that captures the gist of two-way interaction in row by column (i.e., two-mode) data, with one observation per cell. REMAXINT is a probabilistic two-mode clustering model that yields two-mode partitions with maximal interaction between row and column clusters. For estimation of the parameters of REMAXINT, we maximize a conditional classification likelihood in which the random row (or column) main effects are conditioned out. For testing the null hypothesis of no interaction between row and column clusters, we propose a $$max-F$$ m a x - F test statistic and discuss its properties. We develop a Monte Carlo approach to obtain its sampling distribution under the null hypothesis. We evaluate the performance of the method through simulation studies. Specifically, for selected values of data size and (true) numbers of clusters, we obtain critical values of the $$max-F$$ m a x - F statistic, determine empirical Type I error rate of the proposed inferential procedure and study its power to reject the null hypothesis. Next, we show that the novel method is useful in a variety of applications by presenting two empirical case studies and end with some concluding remarks.


Languages ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 123
Author(s):  
Thomas A. Leddy-Cecere

The Arabic dialectology literature repeatedly asserts the existence of a macro-level classificatory relationship binding the Arabic speech varieties of the combined Egypto-Sudanic area. This proposal, though oft-encountered, has not previously been formulated in reference to extensive linguistic criteria, but is instead framed primarily on the nonlinguistic premise of historical demographic and genealogical relationships joining the Arabic-speaking communities of the region. The present contribution provides a linguistically based evaluation of this proposed dialectal grouping, to assess whether the postulated dialectal unity is meaningfully borne out by available language data. Isoglosses from the domains of segmental phonology, phonological processes, pronominal morphology, verbal inflection, and syntax are analyzed across six dialects representing Arabic speech in the region. These are shown to offer minimal support for a unified Egypto-Sudanic dialect classification, but instead to indicate a significant north–south differentiation within the sample—a finding further qualified via application of the novel method of Historical Glottometry developed by François and Kalyan. The investigation concludes with reflection on the implications of these results on the understandings of the correspondence between linguistic and human genealogical relationships in the history of Arabic and in dialectological practice more broadly.


2021 ◽  
Vol 13 (9) ◽  
pp. 4648
Author(s):  
Rana Muhammad Adnan ◽  
Kulwinder Singh Parmar ◽  
Salim Heddam ◽  
Shamsuddin Shahid ◽  
Ozgur Kisi

The accurate estimation of suspended sediments (SSs) carries significance in determining the volume of dam storage, river carrying capacity, pollution susceptibility, soil erosion potential, aquatic ecological impacts, and the design and operation of hydraulic structures. The presented study proposes a new method for accurately estimating daily SSs using antecedent discharge and sediment information. The novel method is developed by hybridizing the multivariate adaptive regression spline (MARS) and the Kmeans clustering algorithm (MARS–KM). The proposed method’s efficacy is established by comparing its performance with the adaptive neuro-fuzzy system (ANFIS), MARS, and M5 tree (M5Tree) models in predicting SSs at two stations situated on the Yangtze River of China, according to the three assessment measurements, RMSE, MAE, and NSE. Two modeling scenarios are employed; data are divided into 50–50% for model training and testing in the first scenario, and the training and test data sets are swapped in the second scenario. In Guangyuan Station, the MARS–KM showed a performance improvement compared to ANFIS, MARS, and M5Tree methods in term of RMSE by 39%, 30%, and 18% in the first scenario and by 24%, 22%, and 8% in the second scenario, respectively, while the improvement in RMSE of ANFIS, MARS, and M5Tree was 34%, 26%, and 27% in the first scenario and 7%, 16%, and 6% in the second scenario, respectively, at Beibei Station. Additionally, the MARS–KM models provided much more satisfactory estimates using only discharge values as inputs.


Sign in / Sign up

Export Citation Format

Share Document