Research of Velocity Stability of Separate Meter in and Separate Meter out Control System for Over-Running Load

2015 ◽  
Vol 727-728 ◽  
pp. 752-756
Author(s):  
Zhong Yi Cao ◽  
Xin Ming Liu ◽  
Wan Rong Wu

There are some defects in the traditional over-running load hydraulic system, such as velocity control is poor and prone to velocity jitter, etc. In order to improve these weaknesses, the components and work principle of the separate meter in and separate meter out (SMISMO) were introduced and the actuator’s feature were analyzed , the simulation model of hydraulic studied system was built, the factors affecting the stability of the system are discussed in this paper. Simulation and experiment showed that the novel control system possessed higher velocity control precise and good stable characteristics.

2018 ◽  
Vol 10 (1) ◽  
pp. 168781401775178
Author(s):  
Wu-Sung Yao

In general, eccentric gravity machinery is a rotation mechanism with eccentric pendulum mechanism, which can be used to convert continuously kinetic energy generated by gravity energy to electric energy. However, a stable rotated velocity of the eccentric gravity machinery is difficult to be achieved only using gravity energy. In this article, a stable velocity control system applied to eccentric gravity machinery is proposed. The dynamic characteristic of eccentric gravity machinery is analyzed and its mathematical model is established, which is used to design the controller. A stable running velocity of the eccentric gravity machinery can be operated by the controlled servomotor. Due to disturbances being periodic, repetitive controller is installed to velocity control loop. The stability performance and control performance of the repetitive control system are discussed. The iterative algorithm of the repetitive control is executed by a digital signal processor TI TMS320C32 floating-point processor. Simulated and experimental results are reported to verify the performance of the proposed eccentric gravity machinery control system.


2014 ◽  
Vol 721 ◽  
pp. 342-348
Author(s):  
Wan Rong Wu ◽  
Jian Chao Yao

Based on the shortcomings of traditional multi actuator composite action on its coordination and load adaptability, this paper has put forward a hydraulic system model where separate meter-in separate meter-out controls the multi actuator, according to different action working conditions of actuator, it has provided a composite control strategy based on pressure flow, and through AMEsim and MATLAB, it has established the composite action hydraulic transmission model of double-actuator system and simulation model of control system, and then conducted co-simulation to verify the designed controller’s good coordination and load adaptability to the separate meter-in and separate meter-out control system under different composite action working conditions.


2013 ◽  
Vol 300-301 ◽  
pp. 133-139
Author(s):  
Shi Ming Wang ◽  
Jing He

Designed a generation system by using ocean wave power for seabed-base detector. The system is mainly composed of an energy conversion device, hydraulic system, power generation system and automatic control system. This paper showed the composition of each subsystem, including the structure of axial flow turbine and the conversion equation of PID control system, hydraulic motor system. The simulation model is established by using SIMULINK block of MATLAB software, gave the results in two different conditions, one have the stability external input and the other don’t meanwhile the hydraulic system will turn to accumulator circuit. The simulation results show that this system can provide stable power output as the real system design reference.


2019 ◽  
Vol 16 (9) ◽  
pp. 3683-3691
Author(s):  
Wen-Bin Lai ◽  
De-Tang Li ◽  
Yong-He Xie

In the development and utilization of wave energy, the wave energy is first converted to mechanical energy, then to hydraulic energy, and finally to electrical energy. Due to the instability and randomness of the wave energy, which makes the energy easily fluctuate during the conversion process. In this paper, an oscillating wave power generation device based on hydraulic transmission system is taken as the study object, and the factors affecting the stability of the hydraulic transmission system are studied by model experiment and AMESim simulation. The results of the test show that the stability can be improved by optimizing the parameters in the hydraulic transmission system according to different wave conditions; However, the optimized hydraulic system can only ensure that the wave energy within a certain wave condition can be stably converted; when the wave condition changes greatly, the hydraulic transmission system is still easy to cause fluctuations. In addition, a Hydraulic Energy Grading Control System is proposed, which further improves the stability of the wave energy during the conversion process.


2012 ◽  
Vol 522 ◽  
pp. 895-901
Author(s):  
Mo Hei ◽  
Qing Kun Zhou ◽  
Ya Fei Lu ◽  
Da Peng Fan

In order to reduce the effect of carrier disturbance on the stability of line of sight (LOS) of the optical-electro stabilization system (OESS), a stabilization accuracy model of stabilization loop is built, and the main factors affecting the stabilization accuracy of stabilization loop in OESS are analyzed. Based on the on-line semi-physical simulation theory, a dSPACE measurement system of the LOS stabilization accuracy is designed to measure the LOS stabilization accuracy of the OESS, and the controller of stabilization loop is designed on the basis of the measurement data on-line conveniently. Experimental results show that the stabilization accuracy of the OESS with this method is 0.24mrad which is met the requirement. The novel method of stabilization accuracy measurement and controller on-line debugging for OESS can achieve higher stabilization accuracy and a greater efficiency over the classic method, and also indicates that this novel method is efficient and should be effective on further stabilization accuracy research of OESS.


2012 ◽  
Vol 233 ◽  
pp. 119-122
Author(s):  
Yan Jie Li ◽  
Tian Yu Cui ◽  
Ji Hai Jiang ◽  
Cai Xin Yu

Abstract. Based on the load-sensing control principle, a novel type of electronic load sensing hydraulic system was developed. Taking a two-loads system for example, the design and analysis of the novel hydraulic system principle was completed and an electronic control system was accomplished using TTC60 controller. A preliminary experimental study was completed. The experimental studies show that the new system can not only achieve the traditional load-sensing control function, but also improve the level of electronic control system.


1999 ◽  
Author(s):  
Yuan-Liang Hsu ◽  
Chi-Cheng Cheng ◽  
San-Lan Wen

Abstract The looper system, located midway between adjacent stands, is a mechanical levitation device commonly applied on modern hot strip mills. In order to fully understand factors affecting the looper’s behavior and predict its motion during rolling processes, a comprehensively mathematical simulation model of the looper control system for a hot strip tandem mill is developed. The simulator includes three system modules: the looper regulator module, the looper dynamics module, and the mass flow module. Simulation results demonstrate good compatibility with position measurement of real rolling processes. Looper responses under circumstances of different original strip lengths and a varying roller speed are specifically examined. Based on this looper simulator, valuable information can be easily obtained for possible improvements on rolling processes in the future.


2003 ◽  
Vol 3 ◽  
pp. 297-307
Author(s):  
V.V. Denisov

An approach to the study of the stability of non-linear multiply connected systems of automatic control by means of a fast Fourier transform and the resonance phenomenon is considered.


2020 ◽  
Vol 14 (2) ◽  
pp. 108-125
Author(s):  
Apoorva Singh ◽  
Nimisha

: Skin cancer, among the various kinds of cancers, is a type that emerges from skin due to the growth of abnormal cells. These cells are capable of spreading and invading the other parts of the body. The occurrence of non-melanoma and melanoma, which are the major types of skin cancers, has increased over the past decades. Exposure to ultraviolet radiations (UV) is the main associative cause of skin cancer. UV exposure can inactivate tumor suppressor genes while activating various oncogenes. The conventional techniques like surgical removal, chemotherapy and radiation therapy lack the potential for targeting cancer cells and harm the normal cells. However, the novel therapeutics show promising improvements in the effectiveness of treatment, survival rates and better quality of life for patients. Different methodologies are involved in the skin cancer therapeutics for delivering the active ingredients to the target sites. Nano carriers are very efficient as they have the ability to improve the stability of drugs and further enhance their penetration into the tumor cells. The recent developments and research in nanotechnology have entitled several targeting and therapeutic agents to be incorporated into nanoparticles for an enhancive treatment of skin cancer. To protect the research works in the field of nanolipoidal systems various patents have been introduced. Some of the patents acknowledge responsive liposomes for specific targeting, nanocarriers for the delivery or co-delivery of chemotherapeutics, nucleic acids as well as photosensitizers. Further recent patents on the novel delivery systems have also been included here.


Sign in / Sign up

Export Citation Format

Share Document