scholarly journals In Vivo Comparative Study of Two Injectable/Moldable Calcium Phosphate Bioceramics

2012 ◽  
Vol 529-530 ◽  
pp. 291-295 ◽  
Author(s):  
Thomas Miramond ◽  
E. Aguado ◽  
E. Goyenvalle ◽  
Pascal Borget ◽  
Serge Baroth ◽  
...  

Calcium phosphate bioceramic granules associated with hydrosoluble polymers formed putties currently more used in clinical applications as they are easy to handle (injectability, moldability). In this study, 2 kinds of materials were tested in rabbit bone defects. The first one is InOss (Biomatlante), a microporous biphasic CaP granules (BCP, HA/TCP mixture) with polysaccharidic hydrogel; and the second one is Actifuse ABX (Baxter/Apatech), pure hydroxyapatite granules containing silicate (HA-Si) with blocks copolymer hydrogel (poloxamer), . The aim of this study was to compare osteogenic properties of two kinds of CaP putties containing HA-Si versus BCP and the kinetic of resorption of their hydrogel. Data have demonstrated that both hydrogels increase the handling properties. Bone regeneration was observed in the two types of sample, however at 3 weeks, Actifuse ABX hydrogel was not totally absorbed, while InOss hydrogel was no longer observed. The second difference observed was osteoconduction. Newly formed bone over the time period studied was moreover in close contact with BCP granules than with HA-Si granules. Larger granules resorption on time was observed for BCP compared to HA-Si. Resorption of Actifuse ABX remains limited and explains the faster kinetic of absorption for InOss. This study demonstrates biocompatibility, absorbability and bone ingrowth at the expense of the two types of putty injectable/moldable bioceramic used for bone regeneration.

2020 ◽  
Vol 10 (5) ◽  
pp. 1651 ◽  
Author(s):  
Abeer G. Ahmed ◽  
Fatin A. Awartani ◽  
Abdurahman A. Niazy ◽  
John A. Jansen ◽  
Hamdan S. Alghamdi

The aim of this in vivo study was to evaluate the efficacy of biphasic calcium phosphate (Maxresorb®, BCP) used in combination with hyaluronic acid (Hyadent®, HyA) gel for regeneration of osseous defects in a rat model. Bilateral femoral condylar bone defects (3 mm diameter and 3 mm depth) were created in 40 male Wistar rats. The defects were grafted as group I (BCP only), group II (BCP + HyA), group III (HyA only), and group IV (empty control). At four weeks and 10 weeks, the bone specimens were evaluated using histological and histomorphometrical analyses to identify the newly formed bone area (NF-BA (%)), as well as the remaining BCP particles (R-BCP (%)). Light microscopic examination indicated the absence of an inflammatory reaction within the bone defects after four weeks or 10 weeks of implantation. Significant new bone regeneration was present in the bone defects grafted with BCP or BCP + HyA biomaterials, as early as four weeks, compared to control groups. The addition of HyA to BCP did not significantly improve bone regeneration at four weeks or 10 weeks. Nevertheless, its role in bone healing and regeneration warrants further investigation.


Author(s):  
Marvis Allais ◽  
Paul E. Maurette ◽  
Natália Gomes de Morais ◽  
Thacianna Barreto da Costa ◽  
Simone Fraga ◽  
...  

2015 ◽  
Vol 37 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Marvis Allais ◽  
Paul E. Maurette ◽  
Natália Gomes de Morais ◽  
Thacianna Barreto da Costa ◽  
Simone Fraga ◽  
...  

Author(s):  
Minh Khai Le Thieu ◽  
Håvard Jostein Haugen ◽  
Javier Sanz‐Esporrin ◽  
Mariano Sanz ◽  
Ståle Petter Lyngstadaas ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Philipp S. Lienemann ◽  
Stéphanie Metzger ◽  
Anna-Sofia Kiveliö ◽  
Alain Blanc ◽  
Panagiota Papageorgiou ◽  
...  

Abstract Over the last decades, great strides were made in the development of novel implants for the treatment of bone defects. The increasing versatility and complexity of these implant designs request for concurrent advances in means to assess in vivo the course of induced bone formation in preclinical models. Since its discovery, micro-computed tomography (micro-CT) has excelled as powerful high-resolution technique for non-invasive assessment of newly formed bone tissue. However, micro-CT fails to provide spatiotemporal information on biological processes ongoing during bone regeneration. Conversely, due to the versatile applicability and cost-effectiveness, single photon emission computed tomography (SPECT) would be an ideal technique for assessing such biological processes with high sensitivity and for nuclear imaging comparably high resolution (<1 mm). Herein, we employ modular designed poly(ethylene glycol)-based hydrogels that release bone morphogenetic protein to guide the healing of critical sized calvarial bone defects. By combined in vivo longitudinal multi-pinhole SPECT and micro-CT evaluations we determine the spatiotemporal course of bone formation and remodeling within this synthetic hydrogel implant. End point evaluations by high resolution micro-CT and histological evaluation confirm the value of this approach to follow and optimize bone-inducing biomaterials.


2011 ◽  
Vol 5 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Oliver D Schneider ◽  
Dirk Mohn ◽  
Roland Fuhrer ◽  
Karina Klein ◽  
Käthi Kämpf ◽  
...  

Background: The purpose of this preliminary study was to assess the in vivo performance of synthetic, cotton wool-like nanocomposites consisting of a biodegradable poly(lactide-co-glycolide) fibrous matrix and containing either calcium phosphate nanoparticles (PLGA/CaP 60:40) or silver doped CaP nanoparticles (PLGA/Ag-CaP 60:40). Besides its extraordinary in vitro bioactivity the latter biomaterial (0.4 wt% total silver concentration) provides additional antimicrobial properties for treating bone defects exposed to microorganisms. Materials and Methods: Both flexible artificial bone substitutes were implanted into totally 16 epiphyseal and metaphyseal drill hole defects of long bone in sheep and followed for 8 weeks. Histological and histomorphological analyses were conducted to evaluate the biocompatibility and bone formation applying a score system. The influence of silver on the in vivo performance was further investigated. Results: Semi-quantitative evaluation of histology sections showed for both implant materials an excellent biocompatibility and bone healing with no resorption in the adjacent bone. No signs of inflammation were detectable, either macroscopically or microscopically, as was evident in 5 µm plastic sections by the minimal amount of inflammatory cells. The fibrous biomaterials enabled bone formation directly in the centre of the former defect. The area fraction of new bone formation as determined histomorphometrically after 8 weeks implantation was very similar with 20.5 ± 11.2 % and 22.5 ± 9.2 % for PLGA/CaP and PLGA/Ag-CaP, respectively. Conclusions: The cotton wool-like bone substitute material is easily applicable, biocompatible and might be beneficial in minimal invasive surgery for treating bone defects.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Che Nor Zarida Che Seman ◽  
Zamzuri Zakaria ◽  
Zunariah Buyong ◽  
Mohd Shukrimi Awang ◽  
Ahmad Razali Md Ralib @ Md Raghib

Introduction: A novel injectable calcium phosphate bone cement (osteopaste) has been developed. Its potential application in orthopaedics as a filler of bone defects has been studied. The biomaterial was composed of tetra-calcium phosphate (TTCP) and tricalcium phosphate (TCP) powder. The aim of the present study was to evaluate the healing process of osteopaste in rabbit tibia. Materials and method: The implantation procedure was carried out on thirty-nine of New Zealand white rabbits. The in vivo bone formation was investigated by either implanting the Osteopaste, Jectos or MIIG – X3 into a critical size defect (CSD) model in the proximal tibial metaphysis. CSD without treatment served as negative control. After 1 day, 6 and 12 weeks, the rabbits were euthanized, the bone were harvested and subjected for analysis. Results: Radiological images and histological sections revealed integration of implants with bone tissue with no signs of graft rejection. There was direct contact between osteopaste material and host bone. The new bone was seen bridging the defect. Conclusion: The result showed that Osteopaste could be a new promising biomaterial for bone repair and has a potential in bone tissue engineering.


2019 ◽  
Vol 20 (14) ◽  
pp. 3430 ◽  
Author(s):  
Jaime Freitas ◽  
Susana Gomes Santos ◽  
Raquel Madeira Gonçalves ◽  
José Henrique Teixeira ◽  
Mário Adolfo Barbosa ◽  
...  

The normal bone regeneration process is a complex and coordinated series of events involving different cell types and molecules. However, this process is impaired in critical-size/large bone defects, with non-unions or delayed unions remaining a major clinical problem. Novel strategies are needed to aid the current therapeutic approaches. Mesenchymal stem/stromal cells (MSCs) are able to promote bone regeneration. Their beneficial effects can be improved by modulating the expression levels of specific genes with the purpose of stimulating MSC proliferation, osteogenic differentiation or their immunomodulatory capacity. In this context, the genetic engineering of MSCs is expected to further enhance their pro-regenerative properties and accelerate bone healing. Herein, we review the most promising molecular candidates (protein-coding and non-coding transcripts) and discuss the different methodologies to engineer and deliver MSCs, mainly focusing on in vivo animal studies. Considering the potential of the MSC secretome for bone repair, this topic has also been addressed. Furthermore, the promising results of clinical studies using MSC for bone regeneration are discussed. Finally, we debate the advantages and limitations of using MSCs, or genetically-engineered MSCs, and their potential as promoters of bone fracture regeneration/repair.


Sign in / Sign up

Export Citation Format

Share Document