scholarly journals Carbon Nanotubes and Carbon Nanotube Structures Used for Temperature Measurement

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2464 ◽  
Author(s):  
Bogdan Florian Monea ◽  
Eusebiu Ilarian Ionete ◽  
Stefan Ionut Spiridon ◽  
Daniela Ion-Ebrasu ◽  
Emil Petre

Accurate measurement of temperatures with low power consumption with the highest sensitivity and smallest possible elements is still a challenge. The thermal, electrical, and mechanical properties of carbon nanotubes (CNTs) have suggested that their use as a very sensitive sensing element will allow the creation of different sensors, far superior to other devices of similar size. In this paper, we present a short review of different constructive designs of CNTs based resistive sensors used for temperature measurement, available in literature, assembled using different processes, such as self-assembly, drop-casting from a solution, thin films obtained by gluing, printing, spraying, or filtration over a special membrane. As particular cases, temperature sensors obtained from CNT-polymer nanocomposite structures, CNTs filled with uniformly dispersed Fe3O4 nanoparticles or with gallium, and carbon nanotube wires (CNWs) hybrids are presented. Using these preparation procedures, mixtures of CNTs with different dimensions and chirality, as well as with a variable level of impurities and structural defects, can be produced. The sensors’ performance charts are presented, highlighting a number of aspects regarding the applicability of CNT structures for temperature measurement ranging from cryogenic temperatures to high temperatures, the limitations they have, their characteristics and advantages, as well as the special situations that may arise given the particular structure of these new types of materials, together with basic relationships and parameters for CNTs characterization. Further research will be required to develop the techniques of manipulating and depositing individual CNTs on supports and electrodes for the development of temperature sensors.

Author(s):  
Reza Moheimani ◽  
M Hasansade

This paper describes a closed-form unit cell micromechanical model for estimating the effective thermal conductivities of unidirectional carbon nanotube reinforced polymer nanocomposites. The model incorporates the typically observed misalignment and curvature of carbon nanotubes into the polymer nanocomposites. Also, the interfacial thermal resistance between the carbon nanotube and the polymer matrix is considered in the nanocomposite simulation. The micromechanics model is seen to produce reasonable agreement with available experimental data for the effective thermal conductivities of polymer nanocomposites reinforced with different carbon nanotube volume fractions. The results indicate that the thermal conductivities are strongly dependent on the waviness wherein, even a slight change in the carbon nanotube curvature can induce a prominent change in the polymer nanocomposite thermal conducting behavior. In general, the carbon nanotube curvature improves the nanocomposite thermal conductivity in the transverse direction. However, using the straight carbon nanotubes leads to maximum levels of axial thermal conductivities. With the increase in carbon nanotube diameter, an enhancement in nanocomposite transverse thermal conductivity is observed. Also, the results of micromechanical simulation show that it is necessary to form a perfectly bonded interface if the full potential of carbon nanotube reinforcement is to be realized.


RSC Advances ◽  
2015 ◽  
Vol 5 (125) ◽  
pp. 103365-103372 ◽  
Author(s):  
Lei Liu ◽  
Dong Wang ◽  
Yuan Hu

Negative graphene oxide was combined with positive chitosan-modified multi-walled carbon nanotubes in aqueous solution and then thermally reduced to fabricate a multi-walled carbon nanotube/graphene (MWCNT/G) hybrid material.


2003 ◽  
Vol 772 ◽  
Author(s):  
Emmanuel Valentin ◽  
Stephane Auvray ◽  
Arianna Filoramo ◽  
Aline Ribayrol ◽  
Marcelo Goffman ◽  
...  

AbstractWe describe the realization of high quality self-assembled single wall carbon nanotube field effect transistors (CNTFET). A method using self-assembled monolayers (SAMs) is used to obtain high yield selective deposition placement of single wall carbon nanotubes (SWNTs) on predefined regions of a substrate. This is achieved with individual or small bundles of SWNTs and with high densities suitable for fabrication of integrated devices. We show that such positioned SWNTs can be electrically contacted to realize high performance transistors, which very well compare with state-of-the-art CNTFETs. We therefore validate the self-assembly approach to reliably fabricate efficient carbon nanotube based devices.


2015 ◽  
Vol 3 (10) ◽  
pp. 2319-2325 ◽  
Author(s):  
Sehee Ahn ◽  
Ayoung Choe ◽  
Jonghwa Park ◽  
Heesuk Kim ◽  
Jeong Gon Son ◽  
...  

Directed self-assembly of carbon nanotubes into 2D rhombic nanomesh films results in greatly lower sheet resistance, higher stretchability, and better mechanical durability than those of random carbon nanotube films.


2013 ◽  
Vol 543 ◽  
pp. 39-42 ◽  
Author(s):  
Petr Slobodian ◽  
Pavel Riha ◽  
Petr Saha

Monitoring body kinematics and joint flexion has fundamental relevance in orthopedics and rehabilitation. The used sensing element is prepared from a highly-deformable polymer composite composed of a network of entangled electrically-conductive carbon nanotubes embedded in elastic polyurethane. The composite is prepared by an innovative procedure in which the non-woven polyurethane filtering membrane and the carbon nanotube cake are integrated by compression molding. As an example of the composite use as a strain sensor, human knee flexion and its cyclic movement is monitored, that may be applicable in athletic training as well as in orthopedics and rehabilitation.


Polymer ◽  
2006 ◽  
Vol 47 (1) ◽  
pp. 341-345 ◽  
Author(s):  
M.C. García-Gutiérrez ◽  
A. Nogales ◽  
D.R. Rueda ◽  
C. Domingo ◽  
J.V. García-Ramos ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3182 ◽  
Author(s):  
Shrutidhara Sarma ◽  
Jang Lee

In this paper, we present the fabrication of an efficient thin film temperature sensor utilizing chemical vapor deposited carbon nanotube (CNT) film as the sensing element on Si substrates, with diamond-like carbon (DLC):Ni as a catalyst in assisting CNT growth. The fabricated sensor showed good electrical response with change in temperature. Relative linear change in resistance of 18.4% for an increase in temperature from 22 °C to 200 °C was achieved. Various characterizing techniques, such as scanning electron microscopy (SEM) and Raman spectroscopy, were used to characterize the films. In an effort to study device performance, van der Pauw and Hall measurements were carried out to study the dependence of resistance on temperature and magnetic fields. Temperature coefficient of resistance of the sensor was calculated as 1.03 × 10−3/°C. All implications arising from the study are presented. The results establish the aptness of the as-grown CNT film to be used as an active sensing material in thin film temperature sensors.


2005 ◽  
Vol 901 ◽  
Author(s):  
Roland Goh ◽  
Eric Rolfe Waclawik ◽  
Nunzio Motta ◽  
John Marcus Bell

AbstractA detailed study of poly(alkylthiophene) self-assembly and organization on single-walled carbon nanotubes is presented. We show that ordered polymer domains are formed when a conjugated polymer is blended with small amounts of carbon nanotubes. By correlating the lowest energy feature in the absorption spectra of the polymer with ordering, we demonstrate that the degree of ordering in the polymer is enhanced when it is blended with carbon nanotubes. Furthermore, we elucidated the conformation of the polymer chain when it is absorbed onto the nanotube surface and imaged the high degree of ordering in the polymer/carbon nanotube complex by microscopy.


2016 ◽  
Vol 3 (3) ◽  
pp. 545-558 ◽  
Author(s):  
David G. Goodwin ◽  
Z. Xia ◽  
T. B. Gordon ◽  
C. Gao ◽  
E. J. Bouwer ◽  
...  

Carbon nanotube/polymer nanocomposite surfaces impact biofilm development through the cytotoxic effect of exposed carbon nanotubes on microorganisms.


Author(s):  
Nanzhu Zhao 1 ◽  
Yongha Kim 1 ◽  
Joseph H. Koo 1

High electrical and thermal conductivity associated with high stiffness and strength offer tremendous opportunities to the development of a series of carbon nanotube incorporated composite materials for a variety of applications. In particular, a small amount of carbon fibers or carbon nanotubes in a non-conductive polymer will transform a composite into a conductive material, which reveals superb potential of their future application in electronic devices. The relation between the amount of carbon nanotubes in a polymer and the electrical conductivity of it can be studied experimentally as well as theoretically with various simulation models. A three-dimensional (3D) Monte Carlo simulation model using resistance network formation was developed to study the relation between the electrical conductivity of the polymer nanocomposite and the amount of carbon nanotubes dispersed in it. In this model, carbon nanotubes were modeled as curvy cylindrical nanotubes with various lengths and fixed tube diameter, all of which were randomly distributed in a non-conductive constrained volume, which represents polymer. The model can be used to find the volumetric electrical resistance of a constrained cubic structure by forming a comprehensive resistance network among all of the nanotubes in contact. As more and more nanotubes were added into the volume, the electrical conductivity of the volume increases exponentially. However, once the amount of carbon nanotubes reached about 0.1 % vt (volume percentage), electrical percolation was detected, which was consistent with the experimental results. This model can be used to estimate the electrical conductivity of the composite matrix as well as to acquire the electrical percolation threshold.


Sign in / Sign up

Export Citation Format

Share Document