Phase Constitution and Heat Treatment Behavior of Low Cost Ti-Mn System Alloys

2013 ◽  
Vol 551 ◽  
pp. 217-222 ◽  
Author(s):  
Masahiko Ikeda ◽  
Masato Ueda ◽  
Kaoru Imaizumi ◽  
Mitsuo Niinomi

This paper is a review of results for Ti-Mn [1], Ti-Mn-Al [2] and Ti-Mn-Fe [3] alloys that have been previously published. Titanium alloys, especially beta-type titanium alloys, have high specific strength, excellent corrosion resistance and good biocompatibility. Unfortunately, applications of titanium alloys are limited by their relatively higher cost. One reason is the use of rare and expensive metallic elements, such as vanadium and molybdenum, as a beta stabilizer. In order to reduce the cost, inexpensive and abundantly available metallic elements should be used as beta stabilizers. Manganese was adopted as a beta stabilizer because it is an abundant metallic element in the Earth’s crust and is relatively low in cost. The heat treatment behavior of Ti-Mn, Ti-Mn-Al and Ti-Mn-Fe alloys was investigated through electrical resistivity and Vickers hardness measurements, X-ray diffraction measurements to identify phase constitution, and observations using a light microscope [1], [2] and [3].

2016 ◽  
Vol 879 ◽  
pp. 119-124 ◽  
Author(s):  
Masahiko Ikeda ◽  
Masato Ueda

Titanium (Ti) exhibits many attractive properties that enable practical applications. It is also considered to be a ubiquitous element, since it has the ninth highest Clarke number among all the elements. However, the principal beta-stabilizing elements for Ti, molybdenum and vanadium, can be very expensive, and so many Ti alloys are also costly. For this reason, less expensive alloying elements would be preferable. Iron (Fe) and manganese (Mn) are beta stabilizers for Ti alloys that are readily available, since they have the fourth and eleventh highest Clarke numbers, respectively. Furthermore, since Fe has a large diffusion coefficient in the beta phase of Ti, precipitation of the omega phase occurs more quickly when Fe is added. The behaviors of Ti-Mn and Mn-Fe alloys during heat treatment have been investigated and it has been found that, in some alloys, the isothermal omega phase is precipitated. Because this phase can lead to brittleness of the alloy, it is very important to suppress its precipitation. Since it is well known that aluminum (Al) suppresses isothermal omega precipitation, the present work investigated the effects of Al content on the phase constitution and heat treatment behavior of Ti-8.5 mass%Mn-1 mass%Fe-0, 1.5, 3.0 and 4.5 mass%Al alloys using electrical resistivity, Vickers hardness, and X-ray diffraction measurements. In the case of each of these alloys, whether solution-treated or water-quenched, only the beta phase was identified. The resistivities at room and liquid nitrogen temperatures were found to increase monotonically with Al content, while the Vickers hardness decreased up to 3 mass% Al and then remained constant. The addition of Al was found to suppress omega precipitation.


2014 ◽  
Vol 783-786 ◽  
pp. 562-567 ◽  
Author(s):  
Masahiko Ikeda ◽  
Masato Ueda ◽  
Yoshinori Sumi ◽  
Mitsuo Niinomi

Titanium is considered to be a ubiquitous element since it has the 9th-highest Clarke number of all elements. Iron and manganese can also be used as beta stabilizers for Ti alloys, and can be considered to be ubiquitous because of their 4th- and 11th-highest Clarke numbers, respectively. However, investigations into the behavior of Ti-Mn-Fe alloys during heat treatment have shown that in some alloys, the isothermal omega phase is precipitated. Because this phase can lead to brittleness, it is very important to prevent it from forming. It is well known that aluminum can suppress the precipitation of the isothermal omega phase. Thus, in the present study, we investigated the effect of Al content on the phase constitution and heat-treatment behavior of Ti-8.5mass%Mn-1mass%Fe-0 to 4.5mass%Al alloys using electrical resistivity, Vickers hardness, and X-ray diffraction measurements. In all solution-treated and quenched alloys, only the beta phase was identified, thus confirming the suppression of omega-phase precipitation. The resistivity was found to increase monotonically with Al content, while the Vickers hardness decreased up to 3 mass% Al and then remained constant.


2018 ◽  
Vol 941 ◽  
pp. 1565-1569
Author(s):  
Hitomi Nagasawa ◽  
Masahiko Ikeda ◽  
Masato Ueda

Titanium and its alloys possess high specific strength, excellent corrosion resistance and good biocompatibility [1] [2]. Since oxygen is an unavoidable impurity in such materials, it has been adopted as an alloying element in the development of low-cost titanium alloys. Therefore, it is important to investigate the role of oxygen in these alloys, especially in β-type alloys. In the present study, the effects of oxygen on the electrical resistivity, Vickers hardness and heat treatment behavior of a Ti-20mass%V alloy which is the lowest concentration for which the fully retained β phase is obtained were assessed. The electrical resistivity and Vickers hardness of solution-treated and quenched specimens increased with increasing oxygen content, due to the dissolution of oxygen into the β phase and solid solution hardening, respectively. Upon isothermal aging at 673 K, the addition of O accelerated a-phase precipitation. The addition of O was found to suppress the appearance of the athermal ω phase in the solution-treated and quenched state.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3798
Author(s):  
Meng Sun ◽  
Dong Li ◽  
Yanhua Guo ◽  
Ying Wang ◽  
Yuecheng Dong ◽  
...  

In order to reduce the cost of titanium alloys, a novel low-cost Ti-3Al-5Mo-4Cr-2Zr-1Fe (Ti-35421) titanium alloy was developed. The influence of heat treatment on the microstructure characteristics and mechanical properties of the new alloy was investigated. The results showed that the microstructure of Ti-35421 alloy consists of a lamina primary α phase and a β phase after the solution treatment at the α + β region. After aging treatment, the secondary α phase precipitates in the β matrix. The precipitation of the secondary α phase is closely related to heat treatment parameters—the volume fraction and size of the secondary α phase increase when increasing the solution temperature or aging time. At the same solution temperature and aging time, the secondary α phase became coarser, and the fraction decreased with increasing aging temperature. When Ti-35421 alloy was solution-treated at the α + β region for 1 h with aging surpassing 8 h, the tensile strength, yield strength, elongation and reduction of the area were achieved in a range of 1172.7–1459.0 MPa, 1135.1–1355.5 MPa, 5.2–11.8%, and 7.5–32.5%, respectively. The novel low-cost Ti-35421 alloy maintains mechanical properties and reduces the cost of materials compared with Ti-3Al-5Mo-5V-4Cr-2Zr (Ti-B19) alloy.


2019 ◽  
Vol 950 ◽  
pp. 75-79
Author(s):  
Zhen Hai Xu ◽  
Chao Ran Ding ◽  
De Bin Shan

With the ever-increasing concern about the energy and environment crises, aluminum alloys are becoming increasingly desirable in the automotive, aerospace, construction and other related industries due to their high specific strength. Various heat-treatment–stamping integrated techniques have been invented to address the formability challenge of aluminum alloy sheets. Electric field affects the heat treatment process of aluminum alloys. In this paper, a device for application of electric field during the heat treatment was developed. The maximum dimensions of specimen are determined via observing the distortion of metal sheets after quenching in cool water. The high-temperature resistant pure nickel wire gains a high-voltage proof performance by wearing bowl-shaped porcelain tubes, and is used to connect electrodes to power supply. The high-voltage resistant mica plates are bolted together to fill the gap between the specimen and electrode. This device was then used in a common commercial furnace to study the effect of electric field applied during the heat treatment on mechanical properties of AA 6082 sheets. It is found that electric field could enhance mechanical properties of AA 6082. The application of electric field has a potential to lower the cost of heat-treatment–stamping integrated techniques.


2007 ◽  
Vol 561-565 ◽  
pp. 1435-1440 ◽  
Author(s):  
Masahiko Ikeda ◽  
Tsuyoshi Miyazaki ◽  
Satoshi Doi ◽  
Michiharu Ogawa

Phase constitution in the solution-treated and quenched state and the heat treatment behavior were investigated by electrical resistivity, hardness, and elastic modulus measurements, X-ray diffraction, and optical microscopy. Hexagonal martensite and the β phase were identified in the Zr-5mass%Nb alloy. β and ω phases were identified in the Zr-10 and 15mass%Nb alloys, and only the β phase was identified in the Ti-20Nb alloy. Resistivity at RT, Vickers hardness and elastic modulus increased up to 10Nb and then decreased dramatically at 15Nb. Above 15Nb, these values slightly decreased. The elastic moduli for 15Nb and 20Nb were 59.5 and 55.5 GPa, respectively. On isochronal heat treatment, the isothermal ω phase precipitated between 473 and 623 K and then the α phase precipitated in the 10Nb, 15Nb and 20Nb alloys.


2016 ◽  
Vol 36 (1) ◽  
pp. 12-17 ◽  
Author(s):  
Iwona Wstawska ◽  
Krzysztof Ślimak

Abstract Titanium alloys are one of the materials extensively used in the aerospace industry due to its excellent properties of high specific strength and corrosion resistance. On the other hand, they also present problems wherein titanium alloys are extremely difficult materials to machine. In addition, the cost associated with titanium machining is also high due to lower cutting velocities and shorter tool life. The main objective of this work is a comparison of different cooling techniques during cryogenic machining of titanium alloys. The analysis revealed that applied cooling technique has a significant influence on cutting force and surface roughness (Ra parameter) values. Furthermore, in all cases observed a positive influence of cryogenic machining on selected aspects after turning and milling of titanium alloys. This work can be also the starting point to the further research, related to the analysis of cutting forces and surface roughness during cryogenic machining of titanium alloys.


2010 ◽  
Vol 638-642 ◽  
pp. 425-430 ◽  
Author(s):  
Masahiko Ikeda ◽  
Masato Ueda ◽  
Ryuichi Matsunaga ◽  
Michiharu Ogawa ◽  
Mitsuo Niinomi

Although titanium is considered to be a ubiquitous element since it has the tenth highest Clarke number of all elements, it is classified as a rare metal because the current refinement process is more environmentally damaging than the processes used to refine iron and aluminum. Furthermore, the beta stabilizing elements of titanium alloys (e.g., V, Mo, Nb, and Ta) are very expensive due to their low crustal abundances. Manganese is also considered to be a ubiquitous element, since it has the 12th highest Clarke number of all elements. Therefore, manganese is a promising alloying element for titanium, especially as a beta-stabilizer. In order to develop beta titanium alloys as ubiquitous metallic materials, it is very important to investigate the properties of Ti-Mn alloys. In this study, the phase constitution of and the effect of heat treatment on Ti-3.3 to 8.7 mass% Mn alloys were investigated by electrical resistivity and Vickers hardness (HV) measurements and by X-ray diffraction (XRD) analysis and optical microscopy. In 3.3, 5.1, and 6.0 mass% Mn alloys quenched from 1173 K, ’ martensite and  phase were identified by XRD, whereas in the 8.7 mass% alloy, only the  phase was detected. The resistivities at both temperatures increased with increasing Mn content up to 6.0 mass% Mn and the positive temperature dependence of resistivity became negative at 6.0 mass% Mn. LN increased gradually with increasing Mn content up to 8.7 mass% Mn, whereasRT decreased considerably at a Mn content of 8.7 mass% Mn. HV increased with increasing Mn content up to 5.1 mass%, after which it began to decrease. In Ti-3.3 mass%Mn and 5.1 mass%Mn alloys, the resistivity and the resistivity ratio decreased with increasing temperature of isochronal heat treatment because of decomposition of ’ martensite. In 6.0Mn and 8.7Mn alloys, the resistivity and the resistivity ratio decreased, while Vickers hardness increased with increasing temperature of isochronal heat treatment because of isothermal  precipitation. Furthermore, the temperature for the onset of precipitation increased with higher Mn content.


2007 ◽  
Vol 29-30 ◽  
pp. 127-130
Author(s):  
Colleen J. Bettles ◽  
Rimma Lapovok ◽  
H.P. Ng ◽  
Dacian Tomus ◽  
Barry C. Muddle

The range of commercial titanium alloys available is currently extremely restricted, with one alloy (Ti-6Al-4V), and derivatives of it, accounting for a very large proportion of all applications. High performance alloys are costly to fabricate and limited to low-volume applications that can sustain the cost. With the emergence of new processing technologies that promise to reduce significantly the cost of production of titanium metal, especially in powder form, there is an emerging imperative for cost-effective near net shape powder processing techniques to permit the benefit of reduced metal cost to be passed on to higher-volume applications. Equally, there is a need for the design and development of new alloys that are intrinsically low-cost and lend themselves to fabrication by novel cost-effective net shape processing. The approaches that might be used to select, design and process both conventional alloys and novel alloy systems will be reviewed, with a focus on innovation in design of low-cost alloys amenable to new processing paths and increasingly tolerant of variability in composition.


2012 ◽  
Vol 581-582 ◽  
pp. 773-776
Author(s):  
Er Chao Ding ◽  
Zhen Yong Man ◽  
Xin Xin Yang ◽  
Jing Tai Zhao

The effects of heat treatment on microstructure and corrosion resistance of Ni-Cr-Mo-Fe nickel-based alloys were investigated by X-ray diffraction (XRD), metallographic microscope (MM), scanning electron microscopy (SEM) and electrochemical analysis, respectively. Experimental results indicated that the samples which were prepared via electric arc melting shielded by argon were pure solid solutions with homogeneous microstructure. Segregation of chromium element and slightly smaller grain size were found after heat treatment. Better corrosion resistance of samples was achieved after heat treatment, due to improvement of microstructure, morphology and distribution of elements.


Sign in / Sign up

Export Citation Format

Share Document