Domain Dynamics under Unipolar Electric Fields for BaTiO3 Single Crystals

2013 ◽  
Vol 582 ◽  
pp. 40-43
Author(s):  
Shotaro Ishikawa ◽  
Yuuki Kitanaka ◽  
Yuji Noguchi ◽  
Masaru Miyayama ◽  
Chikako Moriyoshi ◽  
...  

Domain structures and dynamics of BaTiO3 single crystals under in-situ electric fields along <110>c were investigated by using synchrotron radiation single-crystal X-ray diffractions. Diffraction patterns clearly show the presence of a 90 ° domain structure in the crystals poled along <110>c. The diffraction analysis provides direct evidence of a reversible change in the volume fractions of two kinds of the 90 o domains under unipolar in-situ electric fields. This reversible change in the domain structures under unipolar fields is suggested to originate from the interaction between spontaneous polarization and defect dipoles composed of acceptor and oxygen vacancy.

1990 ◽  
Vol 208 ◽  
Author(s):  
M. R. Fitzsimmons ◽  
E. Burkel ◽  
J. Peisl

ABSTRACTX-ray reflectivity techniques have been used to characterize the surfaces of 0.4µm thick Au films epitaxially grown on single-crystals of NaCl. Measurements of both the specular and non-specular reflectivity suggest that the Au surface is very rough. The nonspecular reflectivity provides valuable information about the correlation of the heights at different points on the surface. The first in situ reflectivity study of the formation and destruction of a grain boundary shows direct evidence for the existence of diffuse scattering from the grain boundary. Measurements of several [0011 twist grain boundaries suggest that the roughness and texture of an interface depends upon the geometrical orientation of the surrounding substrates.


Author(s):  
Jennifer E. Readman ◽  
Alistair Lennie ◽  
Joseph A. Hriljac

The high-pressure structural chemistry of α-zirconium phosphate, α-Zr(HPO4)2·H2O, was studied usingin-situhigh-pressure diffraction and synchrotron radiation. The layered phosphate was studied under both hydrostatic and non-hydrostatic conditions and Rietveld refinement carried out on the resulting diffraction patterns. It was found that under hydrostatic conditions no uptake of additional water molecules from the pressure-transmitting medium occurred, contrary to what had previously been observed with some zeolite materials and a layered titanium phosphate. Under hydrostatic conditions the sample remained crystalline up to 10 GPa, but under non-hydrostatic conditions the sample amorphized between 7.3 and 9.5 GPa. The calculated bulk modulus,K0= 15.2 GPa, showed the material to be very compressible with the weak linkages in the structure of the type Zr—O—P.


Author(s):  
Ilya V. Roslyakov ◽  
Andrei P. Chumakov ◽  
Andrei A. Eliseev ◽  
Alexey P. Leontiev ◽  
Oleg V. Konovalov ◽  
...  

2017 ◽  
Vol 24 (2) ◽  
pp. 521-530 ◽  
Author(s):  
S. Huotari ◽  
Ch. J. Sahle ◽  
Ch. Henriquet ◽  
A. Al-Zein ◽  
K. Martel ◽  
...  

An end-station for X-ray Raman scattering spectroscopy at beamline ID20 of the European Synchrotron Radiation Facility is described. This end-station is dedicated to the study of shallow core electronic excitations using non-resonant inelastic X-ray scattering. The spectrometer has 72 spherically bent analyzer crystals arranged in six modular groups of 12 analyzer crystals each for a combined maximum flexibility and large solid angle of detection. Each of the six analyzer modules houses one pixelated area detector allowing for X-ray Raman scattering based imaging and efficient separation of the desired signal from the sample and spurious scattering from the often used complicated sample environments. This new end-station provides an unprecedented instrument for X-ray Raman scattering, which is a spectroscopic tool of great interest for the study of low-energy X-ray absorption spectra in materials under in situ conditions, such as in operando batteries and fuel cells, in situ catalytic reactions, and extreme pressure and temperature conditions.


2007 ◽  
Vol 130 ◽  
pp. 7-14 ◽  
Author(s):  
Andrew N. Fitch

The highly-collimated, intense X-rays produced by a synchrotron radiation source can be harnessed to build high-resolution powder diffraction instruments with a wide variety of applications. The general advantages of using synchrotron radiation for powder diffraction are discussed and illustrated with reference to the structural characterisation of crystalline materials, atomic PDF analysis, in-situ and high-throughput studies where the structure is evolving between successive scans, and the measurement of residual strain in engineering components.


Author(s):  
Andrea Martini ◽  
Alexander A. Guda ◽  
Sergey A. Guda ◽  
Aram L. Bugaev ◽  
Olga V. Safonova ◽  
...  

Modern synchrotron radiation sources and free electron laser made X-ray absorption spectroscopy (XAS) an analytical tool for the structural analysis of materials under in situ or operando conditions. Fourier approach...


2008 ◽  
Vol 72 (1) ◽  
pp. 201-204 ◽  
Author(s):  
A. Sumoondur ◽  
S. Shaw ◽  
I. Ahmed ◽  
L. G. Benning

AbstractIn this study, direct evidence for the formation of magnetite via a green rust intermediate is reported. The Fe(II) induced transformation of ferrihydrite, was quantified in situ and under O2-free conditions using synchrotron-based time-resolved energy dispersive X-ray diffraction. At pH 9 and Fe(II)/Fe(III) ratios of 0.5 and 1, rapid growth (6 min) of sulphate green rust and its subsequent transformation to magnetite was observed. Electron microscopy confirmed these results, showing the initial rapid formation of hexagonal sulphate green rust particles, followed by the corrosion of the green rust as magnetite growth occurred, indicating that the reaction proceeds via a dissolution-reprecipitation mechanism. At pH 7 and Fe(II)/Fe(III) ratio of 0.5, sulphate green rust was the stable phase, with no transformation to magnetite.


2009 ◽  
Vol 54 (5) ◽  
pp. 420-423 ◽  
Author(s):  
Tsunenori Matsunaga ◽  
Hidetaka Ishizaki ◽  
Shuji Tanabe ◽  
Yoshihiko Hayashi

Sign in / Sign up

Export Citation Format

Share Document