Influence of the Process Temperature of Spark Plasma Sintering on Micorsturcture and Nanoindentation Hardness/Young’s Modulus of WC-8wt%Co

2014 ◽  
Vol 616 ◽  
pp. 56-61
Author(s):  
Jian Feng Zhang ◽  
Eberhard Burkel

WC-8wt%Co nanopowder was consolidated by spark plasma sintering at process temperatures (TSPS) from 1100 to 1400 °C. The nanoindentation hardness and Young’s modulus of the consolidated specimens were measured under different peak load levels (Pmax). The hardnesses and modulus of WC-8wt% Co shows a clear dependence on the microstructures and peak load levels. At 1200 and 1300 °C, the hardness and modulus were higher than those at 1100 and 1400 °C due to the higher relative density and fine grain size. The relationship of stiffness (S) and contact depth (hc) of nanoindentation was discussed.

Author(s):  
Shufeng Li ◽  
Hiroshi Izui ◽  
Michiharu Okano

This paper discusses the dependence of the mechanical properties and microstructure of sintered hydroxyapatite (HA) on the sintering temperature and pressure. A set of specimens was prepared from as-received HA powder and sintered by using a spark plasma sintering (SPS) process. The sintering pressures were set at 22.3MPa, 44.6MPa, and 66.9MPa, and sintering was performed in the temperature range from 800°Cto1000°C at each pressure. Mechanisms underlying the interrelated temperature-mechanical and pressure-mechanical properties of dense HA were investigated. The effects of temperature and pressure on the flexural strength, Young’s modulus, fracture toughness, relative density, activation energy, phase stability, and microstructure were assessed. The relative density and grain size increased with an increase in the temperature. The flexural strength and Young’s modulus increased with an increase in the temperature, giving maximum values of 131.5MPa and 75.6GPa, respectively, at a critical temperature of 950°C and 44.6MPa, and the fracture toughness was 1.4MPam1∕2 at 1000°C at 44.6MPa. Increasing the sintering pressure led to acceleration of the densification of HA.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1048
Author(s):  
Yingchao Guo ◽  
Yongfeng Liang ◽  
Junpin Lin ◽  
Fei Yang

Nano-Y2O3 reinforced Ti-47.7Al-7.1Nb-(V, Cr) alloy was fabricated by a powder metallurgy route using spark plasma sintering (SPS), and the influence of nano-Y2O3 contents on the microstructure and mechanical properties were investigated systematically. The results revealed that the ultimate tensile strength and elongation of the alloy were 570 ± 28 MPa and 1.7 ± 0.6% at 800 °C, 460 ± 23 MPa and 6.1 ± 0.4% at 900 °C with no nano-Y2O3, 662 ± 24 MPa and 5.5 ± 0.5% at 800 °C, and 466 ± 25 MPa and 16.5 ± 0.8% at 900 °C with 0.05 at% nano-Y2O3 addition, respectively. Due to the fine-grain strengthening and the second-phase strengthening, both tensile strength and elongation of the high-Nb TiAl alloy were enhanced with the addition of nano-Y2O3.


2009 ◽  
Vol 631-632 ◽  
pp. 199-204 ◽  
Author(s):  
Yoshimi Watanabe ◽  
Yoshimi Iwasa ◽  
Hisashi Sato ◽  
Akira Teramoto ◽  
Koji Abe

Ti and Ti alloys are widely used as metallic implants, because of their good mechanical properties and nontoxic behavior. However, they have problems as the implant-materials, namely, high Young’s modulus comparing that of bone and low bonding ability with bone. There is a need to develop the Ti and Ti alloys with lower Young’s modulus and good bonding ability. In previous study, Ti composite containing biodegradable poly-L-lactic-acid (PLLA) fiber has been fabricated to improve these problems. However, this composite has low strength because of the imperfect sintering of Ti matrix. To improve its strength, sintering of Ti matrix should be completed. In this study, Ti-NaCl composite material was fabricated by spark plasma sintering (SPS) method using powder mixture of Ti and NaCl to complete the sintering of Ti matrix. To obtain porous Ti samples, Ti-NaCl composite were put into hot water of 100 oC. The porous Ti was dipped into PLLA melt in order to introduce PLLA into the pores of porous Ti. Finally, Ti-PLLA composite was obtained, and PLLA plays a role as reinforcement of Ti matrix. It was found that the Ti-PLLA composite has gradient structure and mechanical properties.


2007 ◽  
Vol 336-338 ◽  
pp. 2366-2368 ◽  
Author(s):  
Ming Hao Fang ◽  
Wei Pan ◽  
Sui Lin Shi ◽  
Zhen Yi Fang

The sintering kinetics model of initial stage by spark plasma sintering (SPS) is discussed in this paper. During SPS, there are discharges among the powder particles. And the particles surface will be melted and form viscose flow. These phenomena accelerate the particles rearrangement and reduce the sintering time. The relationship between the shrinkage ratio of particles and the sintering time during the initial stages of sintering by SPS has been obtained. The results show that L/L0 is linear to the time.


2012 ◽  
Vol 12 (2) ◽  
pp. 959-965 ◽  
Author(s):  
Oleg Vasylkiv ◽  
Hanna Borodianska ◽  
Petre Badica ◽  
Salvatore Grasso ◽  
Yoshio Sakka ◽  
...  

2008 ◽  
Vol 368-372 ◽  
pp. 1004-1006 ◽  
Author(s):  
Yun Long Yue ◽  
H.T. Wu

Ti2AlC/TiAl composites with the addition of niobium were prepared by spark plasma sintering using titanium, aluminum, niobium elemental powers and TiC particles as reactants. The experimental and analytical studies on this kind of material concentrated on the relationship between reinforcement phase and mechanical properties. The Ti2AlC/TiAl composites with 5% niobium exhibit high mechanical properties. The three-point bending strength and fracture toughness reaches as high as 915MPa and 23 MPa·m1/2, respectively. It is found that the in-situ reaction occurs at 1100°C with the addition of niobium at the interface between the TiAl matrix and original reinforcement TiC. Further XRD results indicate that the difference in the reinforcement phase from TiC to Ti2AlC is one of the most important origins to the variation in mechanical properties.


2016 ◽  
Vol 838-839 ◽  
pp. 225-230 ◽  
Author(s):  
Koji Morita ◽  
Byung Nam Kim ◽  
Hidehiro Yoshida ◽  
Keijiro Hiraga ◽  
Yoshio Sakka

In order to fabricate fine-grained and dense nanoceramic materials, the effect of spark-plasma-sintering (SPS) conditions was examined in MgAl2O4 spinel as a reference material. The SPS conditions, such as heating rate and loading temperature, strongly affected the microstructures. Although the density can be improved with decreasing the heating rate to less than 10 °C/min, it requires a long processing time. In order to fully utilize the high heating rate that is a primary advantage of the SPS technique, load controlling is very effective to achieve high density with maintaining fine grain size. An increase in the loading temperature during SPS processing can reduce the residual porosity in a spinel even at the widely used high heating rate of 100 °C/min. This suggests that for the SPS processing in ceramics, the load controlling is an important factor as well as the heating rate and sintering temperature.


Sign in / Sign up

Export Citation Format

Share Document