Selection of Densification Strain to Predict Dynamic Crushing Stress at High Impact Velocity of ALPORAS Aluminium Foam

2014 ◽  
Vol 626 ◽  
pp. 383-388 ◽  
Author(s):  
Mohd Azman Yahaya ◽  
Dong Ruan ◽  
Guo Xing Lu ◽  
Matthew S. Dargusch ◽  
Tong Xi Yu

Cellular material such as aluminium foam has been considered as a potential material for energy absorption upon impact and blast loadings. One of the most important properties that contribute to this feature is the densification strain. At high impact velocity, prediction of the densification strain from quasi-static engineering stress-strain curve has been found inadequate. Furthermore, theoretical prediction using the equation proposed by Reid et al. always over-predicts the dynamic crushing stress. Formation of the shock wave at high impact velocity is believed to further increase the densification level of the foam. However, this effect is disregarded when determining the densification strain quasi-statically. The present study aims to address this issue by determining the densification strain experimentally from impact tests. Forty cylindrical aluminium foams with three different lengths were used as projectiles and were fired towards a rigid load cell by using a gas gun. The peak forces generated from the impact were recorded and analysed. The experimental densification strains were determined physically by measuring the deformation of the foam projectiles after the tests. It is concluded that, at high impact velocity, the densification strain varies with the initial impact velocity. Therefore an appropriate value of densification strain needs to be used in the equation of dynamic crushing stress for a better approximation.

2020 ◽  
Vol 1 ◽  
pp. 1-15
Author(s):  
Ammar Trakic

Armor-piercing ammunition is primarily used to combat against heavy armored targets (tanks), but targets can be light armored vehicles, aircraft, warehouse, structures, etc. It has been shown that the most effective type of anti-tank ammunition in the world is the APFSDS ammunition (Armor Piercing Fin Stabilized Discarding Sabot). The APFSDS projectile flies to the target and with his kinetic energy acts on the target, that is, penetrates through armor and disables the tank and his crew. Since the projectile destroys target with his kinetic energy, then it is necessary for the projectile to have the high impact velocity. The decrease in the velocity of a projectile, during flight, is mainly influenced by aerodynamic forces. The most dominant is the axial force due to the laid trajectory of the projectile. By knowing the axial force (axial force coefficient), it is possible to predict the impact velocity of the projectile, by external ballistic calculation, in function of the distance of the target, and to define the maximum effective range from the aspect of terminal ballistics. In this paper two models will be presented for predicting axial force (the axial force coefficient) of an APFSDS projectile after discarding sabot. The first model is defined in STANAG 4655 Ed.1. This model is used to predict the axial force coefficient for all types of conventional projectiles. The second model for predicting the axial force coefficient of an APFSDS projectile, which is presented in the paper, is the CFD-model (Computed Fluid Dynamics).


1983 ◽  
Vol 105 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Ian V. Lau

The effects of impact timing during the cardiac cycle on the sensitivity of the heart to impact-induced rupture was investigated in an open-chest animal model. Direct mechanical impacts were applied to two adjacent sites on the exposed left ventricular surface at the end of systole or diastole. Impacts at 5 m/s and a contact stroke of 5 cm at the end of systole resulted in no cardiac rupture in seven animals, whereas similar impacts at the end of diastole resulted in six cardiac ruptures. Direct impact at 15 m/s and a contact stroke of 2 cm at the end of either systole or diastole resulted in perforationlike cardiac rupture in all attempts. At low-impact velocity the heart was observed in high-speed movie to bounce away from the impact interface during a systolic impact, but deform around the impactor during a diastolic impact. The heart generally remained motionless during the downward impact stroke at high-impact velocity in either a systolic or diastolic impact. The lower ventricular pressure, reduced muscle stiffness, thinner myocardial wall and larger mass of the filled ventricle probably contributed to a greater sensitivity of the heart to rupture in diastole at low-impact velocity. However, the same factors had no role at high-impact velocity.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Jin Yu ◽  
Zehan Liu ◽  
Ze He ◽  
Xianqi Zhou ◽  
Jinbi Ye

The propagation of stress waves in filled jointed rocks involves two important influencing factors: transmission-reflection phenomena and energy attenuation. In this paper, the split Hopkinson pressure bar (SHPB) test is used to shock the filled rock with joint angles of 0, 30, and 45° and the thickness of 4 mm and 10 mm, respectively, in three different velocities. The wave curves of the incident wave, reflected wave, and transmission are obtained. The effects of the filling angle and joint thickness on wave propagation are analyzed. Based on the propagation characteristics of stress waves in joints, the stress expression of oblique incident stress waves propagating in filling joints is derived, and the energy coefficient of transmission and reflection is calculated. The results show that the propagation of stress wave in filling joints is related to the impact rate. The larger the impact rate is, the larger the maximum voltage amplitude of the three waves is. And the increasing amplitude of the incident and reflected waves is larger than the transmitted wave; the greater the impact velocity is, the smaller the stress-strain curve gap of the three dip joints is, and the fracture strength of the specimen decreases with the increase of the joint dip angle. The larger the joint dip angle is, the smaller the deformation of the rock-like specimen is. The change of the transmission coefficient is related to the joint angle, and the larger joint angle weakens the influence of the joint width on the transmission of the transmitted wave; under each impact velocity, the theoretical and experimental stress peaks are approximately the same, and the transmission coefficient maintains a good consistency with the oblique incident angle.


Aerospace ◽  
2020 ◽  
Vol 7 (6) ◽  
pp. 76
Author(s):  
Mikhail V. Shubov

A concept of drone launched short range rockets (DLSRR) is presented. A drone or an aircraft rises DLSRR to a release altitude of up to 20 km. At the release altitude, the drone or an aircraft is moving at a velocity of up to 700 m/s and a steep angle of up to 68° to the horizontal. After DLSRRs are released, their motors start firing. DLSRRs use slow burning motors to gain altitude and velocity. At the apogee of their flight, DLSRRs release projectiles which fly to the target and strike it at high impact velocity. The projectiles reach a target at ranges of up to 442 km and impact velocities up to 1.88 km/s. We show that a rocket launched at high altitude and high initial velocity does not need expensive thermal protection to survive ascent. Delivery of munitions to target by DLSRRs should be much less expensive than delivery by a conventional rocket. Even though delivery of munitions by bomber aircraft is even less expensive, a bomber needs to fly close to the target, while a DLSRR carrier releases the rockets from a distance of at least 200 km from the target. All parameters of DLSRRs, and their trajectories are calculated based on theoretical (mechanical and thermodynamical) analysis and on several MatLab programs.


2015 ◽  
Vol 22 (8) ◽  
pp. 705-715 ◽  
Author(s):  
D. García-González ◽  
M. Rodríguez-Millán ◽  
A. Vaz-Romero ◽  
A. Arias

2015 ◽  
Vol 786 ◽  
Author(s):  
J. B. Lee ◽  
N. Laan ◽  
K. G. de Bruin ◽  
G. Skantzaris ◽  
N. Shahidzadeh ◽  
...  

The maximum spreading of drops impacting on smooth and rough surfaces is measured from low to high impact velocity for liquids with different surface tensions and viscosities. We demonstrate that dynamic wetting plays an important role in the spreading at low velocity, characterized by the dynamic contact angle at maximum spreading. In the energy balance, we account for the dynamic wettability by introducing the capillary energy at zero impact velocity, which relates to the spreading ratio at zero impact velocity. Correcting the measured spreading ratio by the spreading ratio at zero velocity, we find a correct scaling behaviour for low and high impact velocity and, by interpolation between the two, we find a universal scaling curve. The influence of the liquid as well as the nature and roughness of the surface are taken into account properly by rescaling with the spreading ratio at zero velocity, which, as demonstrated, is equivalent to accounting for the dynamic contact angle.


2013 ◽  
Vol 742 ◽  
pp. 19-23
Author(s):  
Yu Ping Sun ◽  
Zhi En Du ◽  
Hui Li ◽  
Jin Mei Li

Underwater impact and explosion are the main methods that destroy the warships, it cause attention of countries with marine power. The all metal laser welded sandwich panels has the higher stiffness and better mechanical behavior, and be used to protect for warships against impact. This paper analyzed the displacement of sandwich panel on light impact object with different impact velocity , which show that: (1) The top plate penetrate at the impact velocity of 185m/s, then the bottom plate is penetrate when the impact velocity approaches to 275m/s. (2) The displacement of top plate is confined to the scope of 60mm along x-axis and 40mm along Y-axis from the impacting point at a high impact velocity, the failure mode of sandwich panel is serious partial destruction and obvious shear failure.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Haixiang Zhang ◽  
Ye Gao ◽  
Xiwen Zhang ◽  
Xian Yi ◽  
Yanxia Du ◽  
...  

AbstractThis work investigates the splashing behaviors of droplets impacting on solid surfaces and mainly focuses on the characteristics of secondary droplets. According to the experimental results, two different splashing patterns, corona splash and levitating-lamella breakup, are observed. A new breakup mode, named rim-segmenting, is found during the levitating-lamella breakup. In particular, the detailed information of the splashing secondary droplets, including the size, velocity, angle, and total volume of the splashing secondary droplets is obtained from the experimental data. The size distribution of the splashing secondary droplets obeys the gamma distribution function. The average diameter and splashing angle of the secondary droplets are mainly related to the Reynolds number Re, and can be expressed as functions of Re. High impact velocity and liquid viscosity will result in a wider size distribution range of splashing secondary droplets. We also put forward an empirical model to predict the total splashing volume, which is consistent with the experimental data both in this work and previous studies. This work is believed to provide insights on the prediction of the characteristics of splashing secondary droplets.


Sign in / Sign up

Export Citation Format

Share Document