Mechanical and Physical Properties of Early Carbonated High Initial Strength Portland Cement Pastes

2014 ◽  
Vol 634 ◽  
pp. 467-472
Author(s):  
Alex Neves Junior ◽  
Romildo Dias Toledo Filho ◽  
Jo Dweck ◽  
Eduardo de Moraes Rego Fairbairn

After submitted to early age carbonation curing, mechanical and physical properties of high initial strength sulfate resistant Portland cement (HS SR PC) pastes were investigated, which were compared to those of non-carbonated reference pastes. Carbonation was performed for 1 and 24 hours, at the best conditions of CO2capturing, previously determined by the authors. Despite the compressive strength and elastic modulus of the 1h carbonated pastes were slightly higher than those of the reference pastes, their absorbed water content and porosity was slightly higher than that of the reference. In the case of 24h carbonation, its compressive strength decreases significantly because of its much higher porosity, although the new solid carbonated calcium silicate phase presents a much higher specific mass than those of the solid phases of the 1 hour and non-carbonated pastes.

2019 ◽  
Vol 31 (8) ◽  
pp. 382-388 ◽  
Author(s):  
Alex Neves Junior ◽  
Romildo Dias Toledo Filho ◽  
Jo Dweck ◽  
Frank K. Cartledged ◽  
Eduardo de Moraes Rego Fairbairn

Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1707 ◽  
Author(s):  
Yu-You Wu ◽  
Longxin Que ◽  
Zhaoyang Cui ◽  
Paul Lambert

Concrete made from ordinary Portland cement is one of the most widely used construction materials due to its excellent compressive strength. However, concrete lacks ductility resulting in low tensile strength and flexural strength, and poor resistance to crack formation. Studies have demonstrated that the addition of graphene oxide (GO) nanosheet can effectively enhance the compressive and flexural properties of ordinary Portland cement paste, confirming GO nanosheet as an excellent candidate for using as nano-reinforcement in cement-based composites. To date, the majority of studies have focused on cement pastes and mortars. Only limited investigations into concretes incorporating GO nanosheets have been reported. This paper presents an experimental investigation on the slump and physical properties of concrete reinforced with GO nanosheets at additions from 0.00% to 0.08% by weight of cement and a water–cement ratio of 0.5. The study demonstrates that the addition of GO nanosheets improves the compressive strength, flexural strength, and split tensile strength of concrete, whereas the slump of concrete decreases with increasing GO nanosheet content. The results also demonstrate that 0.03% by weight of cement is the optimum value of GO nanosheet dosage for improving the split tensile strength of concrete.


2015 ◽  
Vol 77 ◽  
pp. 448-454 ◽  
Author(s):  
Alex Neves Junior ◽  
Romildo Dias Toledo Filho ◽  
Eduardo de Moraes Rego Fairbairn ◽  
Jo Dweck

2020 ◽  
Author(s):  
Erick Grünhäuser Soares ◽  
João Castro-Gomes

In this preliminary study, the effect of glass powder content at early age compressive strength and its effect at strength retention coefficient during water immersion period on magnesium silicate hydroxide cement pastes on carbonation curing was investigated. A magnesium oxide-rich powder with a maximum grain size of 150 μm was used, as well as, a waste glass powder with a maximum grain size of 250 μm, which was obtained from grinded flint glass bottles. Cement pastes were produced with 0, 10, 20, 30, 40, and 50 glass powder weight percentage. The specimens were compacted into cubic moulds (e = 20 mm) under 70 MPa and, subsequently, cured on accelerate carbonation chamber for 2h at >99% CO2 concentration. The compressive strength was determined 3 days after CO2, period which the specimens were preserved on room conditions (20∘C and 60%RH), and also at 3, 7 and 14 days of water immersion period. Comparison of the results obtained for different mixing compositions, as well as, different water immersion periods are discussed in this work.


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


2007 ◽  
Vol 72 (6) ◽  
pp. 591-604 ◽  
Author(s):  
Gordana Stefanovic ◽  
Ljubica Cojbasic ◽  
Zivko Sekulic ◽  
Srdjan Matijasevic

Fly ash (FA) can be used in cement mixtures with certain limitations. The problem of the mentioned mixtures lies in the insufficient activity of the particles of FA in the reactions which are important for the establishment of the mechanical characteristics of cement. This is particularly true for the hydration reactions. As a result of this, cement pastes formed by mixing ash and clinker have worse characteristics compared to those of pure Portland cement (PC), especially in the early period of setting. As is well known, FA can be a good solution for the neutralization of the negative effects generated due to the creation of free Ca(OH)2 during the hydration of PC, provided that the problems with the low activity of FAare overcome. For the experiments in this study, a mixture of Portland cement and fly ash was used, the content of ash in the mixture being 30 % and 50 %. Mechanical activation was performed in a vibrating ring mill. The goal of this study was to demonstrate, through experimental results, that during the mechanical activation of a PC and FA mixture, the components in the mixture which mostly affect the direction, rate and range of hydration reactions occurring in the mixture had been activated. The values of the compressive strength of the activated and non-activated mixtures and the changes of their specific surface area proved that during the grinding process, the mixture PC+FA had been mechanically activated. The highest increase of compressive strength was achieved in the early period of setting, which indicates an improvement in the early hydration of the mixture. XRD, DTA and TG analyses showed that the alite (C3S) and belite (C2S) from the PC and a part of the fly ash were activated. .


2021 ◽  
Author(s):  
Palash Badjatya ◽  
Abdullah Akca ◽  
Daniela Fraga Alvarez ◽  
Baoqi Chang ◽  
Siwei Ma ◽  
...  

This study describes and demonstrates a carbon-negative process for manufacturing cement from widely abundant seawater-derived magnesium (Mg) feedstocks. In contrast to conventional Portland cement, which starts with carbon-containing limestone as the source material, the proposed process uses membrane-free electrolyzers to facilitate the conversion of carbon-free magnesium ions (Mg2+) in seawater into magnesium hydroxide (Mg(OH)2) precursors for the production of Mg-based cement. After a low-temperature carbonation curing step converts Mg(OH)2 into magnesium carbonates through reaction with carbon dioxide (CO2), the resulting Mg-based binders can exhibit compressive strength comparable to that achieved by Portland cement after curing for only two days. Although the proposed “cement-from-seawater” process requires similar energy use per ton of cement as existing processes, its potential to achieve a carbon-negative footprint makes it highly attractive to decarbonize one of the most carbon intensive industries.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Walid Edris ◽  
Faris Matalkah ◽  
Bara’ah Rbabah ◽  
Ahmad Abu Sbaih ◽  
Reham Hailat

Abstract This research aims to produce a Compressed Earth Block (CEB) product using locally available soil collected from northern Jordan. The CEB mixture was further stabilized using Portland cement, lime, and sodium silicate. The research significance is based upon the urgent need of most developing countries (e.g. Jordan, Egypt…etc) to build more durable and low-cost houses by using locally available materials. As a result, CEB was identified as a cheap and environmentally friendly construction material. CEB specimens were thoroughly characterized by studying the mechanical properties and durability characteristics. Blocks of 30 x 15 x 8 cm with two holes of 7.5 cm in diameter have a potential for higher enduring, higher compressive strength, better thermal insulation, and lower production cost. Blocks were manufactured with an addition of 8 % for either Portland cement or lime, as well as 2 % of sodium silicate to the soil. The results showed that the addition of 8 % of cement to the CEB achieves satisfactory results in both mechanical and durability properties. Also, the addition of sodium silicate was found to enhance the early-age compressive strength however it affected negatively the durable properties of blocks by increasing the erosion rate and deterioration when exposed to water.


2017 ◽  
Vol 888 ◽  
pp. 37-41
Author(s):  
Hasrul Yahya ◽  
Mohd Roslee Othman ◽  
Zainal Arifin Ahmad

Porcelain balls as grinding media are produced by firing process of clay, quartz and feldspar mixtures. This application need high technological properties such as high compressive strength and hardness, wear resistance, low water absorption and excellent chemical resistance. These properties are associated with higher firing temperatures. The porcelain balls were prepared by mixing 30 wt.% clay, 40 wt.% feldspar and 30 wt.% quartz. The samples were sintered at 1200°C, 1230°C, 1250°C, 1270°C and 1300°C for 2 hours with heating rate of 3°C/min. Both green powder and fired samples were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF) and scanning electron microscopy (SEM).The properties of the fired samples were evaluated by compressive strength, hardness, shrinkage, water absorption, bulk density, and porosity measurement. Increasing of compressive strength, hardness and density are associated with increasing of firing temperatures. Porcelain balls PB1 and PB2 can be produced as grinding media with optimum mechanical and physical properties at firing temperature 1270°C and 1250°C, respectively.


Sign in / Sign up

Export Citation Format

Share Document