Evaluation of Surface Properties and In Vitro Characterization of Surface Modified In Situ TiO2 Nanofibers

2015 ◽  
Vol 656-657 ◽  
pp. 63-67
Author(s):  
Ai Wen Tan ◽  
Belinda Pingguan-Murphy ◽  
Roslina Ahmad ◽  
Sheikh Akbar

In situ TiO2 nanofiber arrays have been successfully produced directly on a Ti-6Al-4V substrate by using thermal oxidation under a limited supply of oxygen. Their morphology, elemental composition, crystal structure, surface roughness and surface wettability were characterized by field-emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffractometer (XRD), atomic force microscope (AFM) and contact angle goniometer, respectively. The results of material characterization studies revealed that TiO2 nanofibers possessed greater surface roughness and wettability, as well as the degree of crystallinity. In vitro characterization have also been evaluated by using bovine articular chondrocytes on the resulting TiO2 nanofibrous surface at different time points. Cell adhesion was observed qualitatively by using FESEM and cell proliferation was determined quantitatively by using AlamarBlue reduction assay. The results showed that the TiO2 nanofibrous substrate triggers enhanced chondrocytes adhesion, proliferation, and production of extracellular matrix (ECM) fibrils compared to untreated substrate. These results suggest that the oxidation process produces a surface structure to which chondrocytes affinity, and thus this surface would has potential use in implants designed for cartilaginous applications.

2014 ◽  
Vol 575 ◽  
pp. 219-222
Author(s):  
A.W. Tan ◽  
Belinda Pingguan-Murphy ◽  
Roslina Ahmad ◽  
Sheikh Akbar

Titania nanofiber (TiO2 NFs) arrays were fabricated in situ on a Ti-6Al-4V substrate by an oxidation process. Their surface morphology, crystallographic structure, surface roughness and wettability were characterized, as well as their in vitro interaction with bovine articular chondrocytes at different time points. Results showed that TiO2 NFs possessed greater surface roughness, hydrophilicity and degree of crystallinity. The in vitro cell studies revealed that TiO2 NFs substrate triggers enhanced cell adhesion, proliferation and extracellular matrix (ECM) formation compared to the untreated control sample. These results showed that chondrocytes have an affinity to the nanofibrous substrate surface and thus we suggest that such surfaces are suited to be used as an implant designed for cartilage growth.


2016 ◽  
Vol 23 (5) ◽  
pp. 1110-1117 ◽  
Author(s):  
M. V. Vitorino ◽  
Y. Fuchs ◽  
T. Dane ◽  
M. S. Rodrigues ◽  
M. Rosenthal ◽  
...  

A compact high-speed X-ray atomic force microscope has been developed forin situuse in normal-incidence X-ray experiments on synchrotron beamlines, allowing for simultaneous characterization of samples in direct space with nanometric lateral resolution while employing nanofocused X-ray beams. In the present work the instrument is used to observe radiation damage effects produced by an intense X-ray nanobeam on a semiconducting organic thin film. The formation of micrometric holes induced by the beam occurring on a timescale of seconds is characterized.


2008 ◽  
Vol 3 (3) ◽  
pp. 155892500800300 ◽  
Author(s):  
Michael S. Ellison ◽  
Paulo E. Lopes ◽  
William T. Pennington

The properties of a polymer are strongly influenced by its morphology. In the case of fibers from semi-crystalline polymers this consists of the degree of crystallinity, the spacing and alignment of the crystalline regions, and molecular orientation of the polymer chains in the amorphous regions. Information on crystallinity and orientation can be obtained from X-ray analysis. In-situ X-ray characterization of a polymer during the melt spinning process is a major source of information about the effects of material characteristics and processing conditions upon structure evolution along the spinline, and the final structure and properties of the end product. We have recently designed and installed an X-ray system capable of in-situ analysis during polymer melt spinning. To the best of our knowledge this system is unique in its capabilities for the simultaneous detection of wide angle and small angle X-ray scattering (WAXS and SAXS, respectively), its use of a conventional laboratory radiation source, its vertical mobility along the spinline, and its ability to simulate a semi-industrial environment. Setup, operation and demonstration of the capabilities of this system is presented herein as applied to the characterization of the melt spinning of isotactic poly(propylene). Crystallinity and crystalline orientation calculated from WAXS patterns, and lamellar long period calculated from SAXS patterns, were obtained during melt spinning of the polymer along the spinline.


2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Dandan Sun ◽  
Jiang Li ◽  
Qinghua Pan ◽  
Chaowei Hao ◽  
Guoqiao Lai

PA6/LiCl composites were synthesized by in situ anionic polymerization based on the interaction between the inorganic salts and PA6. Sodium hydroxide as initiator and N-acetylcaprolactam as activator were used in the preparation of PA6/LiCl composites with variety of LiCl content. X-ray diffraction (XRD) and differential scanning calorimeter (DSC) testing results showed that both of degree of crystallinity and melting temperature of the composites were decreased under the influence of LiCl. And theγcrystal phase proportion increased with increasing the LiCl content to appropriate amount.


2021 ◽  
Vol 92 (11) ◽  
pp. 113701
Author(s):  
Shawn L. Riechers ◽  
Nikolai Petrik ◽  
John S. Loring ◽  
Mark K. Murphy ◽  
Carolyn I. Pearce ◽  
...  

2012 ◽  
Vol 457-458 ◽  
pp. 365-371 ◽  
Author(s):  
Cai Yun Zhang ◽  
Dai Yin Peng ◽  
Chuan Hua Lu ◽  
Xian Ping Wang ◽  
Qian Feng Fang

In this paper the hydroxyapatite fibers reinforced chitosan nanocomposites with high hydroxyapatite dosage (70~90 wt%) were synthesized by in-situ hybridization. The semi-permeable membrane was used to control the process of hybridization and morphology of hydroxyapatite. The compositional and morphological properties of nanocomposites were investigated by FTIR spectroscopy, X-ray diffraction, and transmission electron microscopy. The results showed that the hydroxyapatite were carbonated nanometer crystalline fibers with high aspect ratio (about 25) and dispersed uniformly in the nanocomposites. The high-resolution image indicated that the growth of nano-hydroxyapatite crystallites in the chitosan matrix preferred in the c-axis. The mechanical properties of these nanocomposites were enhanced dramatically and the compressive strength increases almost to 170MPa when the hydroxyapatite content is 70 wt%. The in vitro tests indicated that the composites have high bioactivity and degradation. These properties illustrated the potential application of this kind of nanocomposites for bone tissue engineering.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2855
Author(s):  
Emilia Frydrych-Tomczak ◽  
Tomasz Ratajczak ◽  
Łukasz Kościński ◽  
Agnieszka Ranecka ◽  
Natalia Michalak ◽  
...  

The structural characterization of glass slides surface-modified with 3-azidopropyltrimethoxysilane and used for anchoring nucleic acids, resulting in the so-called DNA microarrays, is presented. Depending on the silanization conditions, the slides were found to show different oligonucleotide binding efficiency, thus, an attempt was made to correlate this efficiency with the structural characteristics of the silane layers. Atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and X-ray reflectometry (XRR) measurements provided information on the surface topography, chemical composition and thickness of the silane films, respectively. The surface for which the best oligonucleotides binding efficiency is observed, has been found to consist of a densely-packed silane layer, decorated with a high-number of additional clusters that are believed to host exposed azide groups.


Author(s):  
Danilo Dini ◽  
Flavio Cognigni ◽  
Daniele Passeri ◽  
Francesca Anna Scaramuzzo ◽  
Mauro Pasquali ◽  
...  

Abstract The present review analyses the recent literature on the combined use of X-ray microscopy (XRM) and atomic force microscopy (AFM) for multiscale characterization of Li+ (or Li) batteries (LiBs) with the aim of developing guidelines for correlative analysis. The usefulness of XRM resides in the capability of affording non invasively in situ images of the inner parts of a LiB (an encapsulated device) with spatial resolution of dozens of nm during operation. XRM is non destructive and affords the early diagnosis of LiBs degradation causes when these manifest themselves as microdeformations. Multiscale characterization of LiBs also requires AFM for visualizing the morphological/physical alterations of LiB components (anodes, cathodes, electrolyte) at the sub-nanometer level. Different to XRM, AFM necessitates of a modification of LiB working configuration since AFM uses a contacting probe whereas XRM exploits radiation-matter interactions and does not require LiB dissection. A description of the working principles of the two techniques is provided to evidence which technical aspects have to be considered for achieving a meaningful correlative analysis of LiBs. In delineating new perspectives for the analysis of LiBs we will consider additional complementary techniques. Among various AFM-based techniques particular emphasis is given to electrochemical AFM (EC-AFM).


2003 ◽  
Vol 02 (04n05) ◽  
pp. 343-348 ◽  
Author(s):  
CHIH-HAO LEE ◽  
WEN-YEN PEN ◽  
MING-ZHE LIN ◽  
KUAN-LI YU ◽  
JEN-CHUNG HSUEH

Atomic force microscopy and X-ray reflectivity methods are used to characterize a surface morphology which includes the information of rms roughness, roughness exponent, and the height–height correlation length. Two major reasons to interpret the discrepancy of rms roughness data measured by AFM and X-ray reflectivity are (1) the bandpass of power spectra density is different and (2) the X-ray reflectivity probes the high density buried layer.


Author(s):  
R. E. Herfert

Studies of the nature of a surface, either metallic or nonmetallic, in the past, have been limited to the instrumentation available for these measurements. In the past, optical microscopy, replica transmission electron microscopy, electron or X-ray diffraction and optical or X-ray spectroscopy have provided the means of surface characterization. Actually, some of these techniques are not purely surface; the depth of penetration may be a few thousands of an inch. Within the last five years, instrumentation has been made available which now makes it practical for use to study the outer few 100A of layers and characterize it completely from a chemical, physical, and crystallographic standpoint. The scanning electron microscope (SEM) provides a means of viewing the surface of a material in situ to magnifications as high as 250,000X.


Sign in / Sign up

Export Citation Format

Share Document