Changes in Structural, Morphological, and Corrosion Properties of CrN Thin Film Effected by Varying N2 Pressure in the Sputtering Process

2015 ◽  
Vol 659 ◽  
pp. 555-559 ◽  
Author(s):  
Wichuda Wongtanasarasin ◽  
Rachsak Sakdanuphab ◽  
Kajpanya Suwansukho ◽  
Aparporn Sakulkalavek

In this study, we investigate a facet of the fabrication process of chromium nitride (CrN) film intended as a protective coating for pineapple blades. CrN thin films were deposited on unpolished stainless steel substrates (AISI304) by DC reactive magnetron sputtering in Ar+N2 gases. In principle, the proportion of nitrogen partial pressure to the total pressure in the sputtering process should have considerable effects on the CrN film’s chemical composition, its crystal structure, its hardness, and its corrosion resistance. We tested this supposition out by using several different nitrogen partial pressures in the sputtering process and observed the films deposited. The coatings were deposited at five different nitrogen partial pressures of 4.0x10-4 mbar, 8.0x10-4 mbar, 1.2x10-3 mbar, 1.6x10-3 mbar, and 2.0x10-3. The deposition times were controlled to achieve 5-µm thick films in each deposition. The films were analyzed by several analytical methods, such as X-ray diffraction (XRD), scanning electron microscope, micro-hardness and potentiostat in pineapple juice. The XRD spectra of the films showed face-centered cubic structure with (200) preferred orientation, positively identifying them as Cr2N and CrN thin films. The calculated d-spacing and lattice parameter of the CrN films increased with increasing nitrogen partial pressure; the ranges were 0.283–0.287 nm and 0.491-0.497 nm, respectively. The cross-section morphology of the CrN films reveals the columnar grain growth with a high density. The crystal structure and the grain texture correspond with the hardness property. The films corrosion potential, an indicator of their corrosion property, was varied from -0.14 to -0.05 volts with varying nitrogen pressure. The most corrosion resistant and the good hardness were the film fabricated at the nitrogen partial pressure of 1.2x10-3 mbar.

1999 ◽  
Vol 13 (07) ◽  
pp. 833-839 ◽  
Author(s):  
M. GHANASHYAM KRISHNA ◽  
A. K. BHATTACHARYA

Vanadium nitride thin films have been deposited on to quartz substrates by dc magnetron sputtering at two different total pressures and a series of nitrogen partial pressures. The spectral transmittance of these films, in the region 350 to 1500 nm, is strongly dependent on the nitrogen partial pressure during sputtering and relatively insensitive to total pressure. The films became more transparent as the nitrogen partial pressure was decreased at a constant total pressure. The optical constants, refractive index and extinction coefficient, exhibited a similar dependence on the nitrogen partial pressure. The sheet resistivity of the films decreased with increasing nitrogen partial pressure. The values of resistivity indicate that the films are semiconducting rather than metalic.


2014 ◽  
Vol 789 ◽  
pp. 466-470
Author(s):  
Qing Hao Shi ◽  
Bing Ying Wang ◽  
Bin Zhao

The corrosion mechanism of organic silicon modified polyurea composite coating under different CO2 partial pressures was studied using high-temperature autoclave, combined with scanning electron microscopy (SEM), adhesion tests and electrochemical impedance spectroscopy (EIS) technology. The experimental results showed that: there was no corrosion product formed on the surface of coating sample after high-temperature high-pressure corrosion test, and with the increasing of CO2 partial pressure, the coating adhesion and impedance values decline increases. Moreover CO2 partial pressure increases accelerated the failure process of polyurea composite coating system.


2017 ◽  
Vol 11 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Mirjana Novakovic ◽  
Maja Popovic ◽  
Zlatko Rakocevic ◽  
Natasa Bibic

The properties of various CrxNy films grown by direct current (DC) reactive sputtering process with different values of nitrogen partial pressures (0, 2?10-4, 3.5?10-4 and 5?10-4 mbar) were studied. The structural analysis of the samples was performed by using X-ray diffraction and transmission electron microscopy (TEM), while an elemental analysis was realized by means of Rutherford backscattering spectrometry. By varying nitrogen partial pressure the pure Cr layer, mixture of Cr, Cr2N and CrN phases, or single-phase CrN was produced. TEM analysis showed that at pN2 = 2?10-4 mbar the layer has dense microstructure. On the other hand, the layer deposited at the highest nitrogen partial pressure exhibits pronounced columnar structure. The optical properties of CrxNy films were evaluated from spectroscopic ellipsometry data by the Drude or combined Drude and Tauc-Lorentz model. It was found that both refractive index and extinction coefficient are strongly dependent on the dominant phase formation (Cr, Cr2N, CrN) during the deposition process. Finally, the electrical studies indicated the metallic character of Cr2N phase and semiconducting behaviour of CrN.


1991 ◽  
Vol 243 ◽  
Author(s):  
Chi Kong Kwok ◽  
Seshu B. Desu

AbstractThe properties of ferroelectric thin films can be significantly influenced by the presence of point defects. The concentration of vacancies presented in these thin films is known to be one of the key parameters causing the degradation of these films when these films are subjected to polarization reversals.To study the effects of the vacancy concentration on the ferroelectric properties, sol gel PZT films and powders were annealed in different oxygen partial pressures. For the PZT films, the reduction of oxides to pure metals was not observed even with films annealed at 2×10−5 atmosphere of oxygen partial pressure. Samples annealed at low oxygen partial pressure (for instance, 10−3 and 2×10−5 atmosphere), which has more Pb and O2 depletions and consequently has more Pb and O2 vacancies, cannot be switched easily. The ratios of coercive field after and before fatigue increase as the defect concentrations of the annealed samples increase.


2011 ◽  
Vol 383-390 ◽  
pp. 6289-6292
Author(s):  
Jian Ting He ◽  
Bo Xue Tan ◽  
Qin Qin Wei ◽  
Yuan Bin Su ◽  
Shu Lian Yang

ZnO thin films were deposited on n-Si (111) substrates at various oxygen partial pressures by pulsed laser deposition (PLD). X-ray diffraction (XRD), scanning electron microscopy (SEM) were used to analyze the influence of the oxygen partial pressure on the crystallization and morphology of the ZnO thin films. An optimal crystallized ZnO thin film was observed at the oxygen partial pressure of 6.5Pa. X-ray photoelectron spectroscopy (XPS) was used to analyze the surface components and distribution status of various elments in ZnO thin films. It was found that ZnO thin films were grown in Zn-rich state.


2011 ◽  
Vol 5 (1) ◽  
pp. 25-29 ◽  
Author(s):  
Mirjana Novakovic ◽  
Maja Popovic ◽  
Natasa Bibic

This paper presents a study of micro-structural changes induced in CrN layers by irradiation with 120 keV argon ions. The layers were deposited on (100) Si wafers, at different nitrogen partial pressures (2?10-4, 3.5?10-4 and 5?10-4 mbar), to a total thickness of 260-280 nm. During deposition the substrates were held at 150?C. After deposition the samples were irradiated with argon ions to the fluencies of 1?1015 and 1?1016 ions/cm2, under the vacuum of 7?10-6 mbar. Characterization of the samples structure and morphology were performed by X-ray diffraction (XRD) analysis and cross-sectional transmission electron microscopy (XTEM), and the concentration profiles were determined by Rutheford backscattering (RBS) spectrometry. It was found that the layer composition strongly depends on the nitrogen partial pressure during deposition. A pure stoichiometric CrN phase was achieved for the highest nitrogen partial pressure (5?10-4 mbar). Argon ions irradiation induces micro-structural changes in the CrN layers such as variation of the lattice constants, micro-strain and mean grain size.


1990 ◽  
Vol 5 (11) ◽  
pp. 2490-2496 ◽  
Author(s):  
C. J. Torng ◽  
J. M. Sivertsen ◽  
J. H. Judy ◽  
C. Chang

Thin C:N films were prepared by rf diode sputtering of a graphite target in a mixed argon/nitrogen plasma. We have observed a systematic variation of the properties of these C:N films with an increase in the nitrogen partial pressure. XPS, AES, and TEM studies show that nitrogen will stabilize the diamond sp3 bonding. From XPS studies, we found that the density of our C:N films is increased from 1.37 × 1023 atoms/cm3 to 1.63 × 1023 atoms/cm3 using a 100% nitrogen plasma. The energy gap of our nitrogen carbon also shows an increase from 1.1 eV to 1.4 eV using a 100% nitrogen plasma. The mechanical properties also are shown to be enhanced for certain applications. By using the same method, we can also show that it can produce 100% amorphous C:N films which are more diamond-like as compared with other methods.


1993 ◽  
Vol 313 ◽  
Author(s):  
Bruce M. Lairson ◽  
Mark R. Visokay ◽  
Robert Sinclair ◽  
Bruce M. Clemens

ABSTRACTWe report on the magnetic and Magneto-optical properties of PtFe and PtCo intermetallic thin films when they have the CuAu(I) tetragonal structure and their crystallographic C axis is oriented out of the film plane. These films possess large perpendicular magnetic anisotropy energies. We observe changes in the Magneto-optic Kerr rotations of Pt-Fe and Pt-Co alloys associated with the formation of the uniaxial CuAu(I) crystal structure. In particular, we report the observation of up to 60% enhancement in the Magneto-optic Ken-rotation for ordered, epitaxial PtFe intermetallic alloy over that of the random face centered cubic alloy. This enhancement is wavelength dependent, with a peak in the visible light range at 2.0 eV.


Sign in / Sign up

Export Citation Format

Share Document