Comparative Investigations of some Properties of Lightweight Cement Concretes Containing Siliceous Fly Ash

2016 ◽  
Vol 677 ◽  
pp. 67-74
Author(s):  
Wojciech Kubissa

In the article the possibility of lightweight cement concrete manufacturing has been presented with use of binder in which part of cement was replaced with siliceous fly ash Class F. It was used lightweight aggregate Pollytag and Keramzyt. Total amount of binder was 400 kg/m3 with w/b=0.5. Mechanical properties has been tested as well as properties affecting durability of concrete. Replacing part of cement with fly ash improved concrete resistance on chloride ion migration, reduced compressive and tensile strength of concrete and increased carbonation depth.

2018 ◽  
Vol 195 ◽  
pp. 01008
Author(s):  
Puput Risdanareni ◽  
Januarti Jaya Ekaputri ◽  
Ike Maulidiyawati ◽  
Poppy Puspitasari

This paper investigates the effect of sintered fly ash lightweight aggregate as coarse aggregate substitution on the mechanical properties of concrete. The lightweight aggregate (LWA) was produced using the cold bonded method and then sintered at a temperature of 900°C. An alkaliactivated system was applied as a binding agent of the LWA. Fly ash was used as precursor while sodium hydroxide and sodium silicate were employed as alkali activators. Three variations of the LWA dosage were performed, which were 0%, 50%, and 100 % of the volume of coarse aggregate in the concrete mixture. The mechanical properties of the concrete investigated in this research are the compressive strength and split tensile strength. The result showed that the mechanical properties of the concrete slightly decrease along with the increased dosage of the LWA in the mixture. However, employing sintered fly ash the LWA is proven as an effective solution in reducing the concrete density without sacrificing its strength.


2010 ◽  
Vol 168-170 ◽  
pp. 2178-2181 ◽  
Author(s):  
Feng Lan Li ◽  
Jing Li ◽  
Song Chen ◽  
Wen Jie Zhao

The mechanical properties of concrete mixed with composite coarse-aggregate were studied by the orthogonal test method, in which the four factors such as the cement content, the percent of cement replaced by fly ash, the percent of crushed limestone with grain size of 16-25 mm replaced by lightweight aggregate with the same grain size and the water to binder (cement + fly ash) ratio were considered. The results show that the water to binder ratio is the most effective factor influencing all of the mechanical properties, the mechanical properties except the splitting tensile strength are less influenced by the cement content, the elastic modulus and axial compressive strength as well as flexural tensile strength is largely affected by the replacement of cement by fly ash. The effect of the replacement of crushed limestone by lightweight aggregate is much more obvious on the cubic compressive strength than on the axial compressive strength, and larger on the flexural tensile strength than the splitting tensile strength.


2011 ◽  
Vol 477 ◽  
pp. 274-279 ◽  
Author(s):  
Yi Xu ◽  
Lin Hua Jiang ◽  
Hong Qiang Chu ◽  
Lei Chen

In this study, the effects of fiber types on the mechanical properties of lightweight aggregate concretes were investigated. Three types of fibers, namely, polypropylene fiber, steel fiber and water hyacinth (Eichhornia crassipes) fiber, and two types of lightweight aggregates, namely, expanded polystyrene and ceramsite were used. The compressive strength and splitting tensile strength of concretes were tested. The results show that both the compressive strength and the splitting tensile strength were improved by adding a reasonable volume of steel fiber and polypropylene fiber into LWAC. The addition of water hyacinth fiber had little effect on the compressive strength of LWAC, while a little increase was observed in the splitting tensile strength.


2016 ◽  
Vol 711 ◽  
pp. 21-28
Author(s):  
Francisco J. Presuel-Moreno

The performance with regard to chloride penetration of specimens made with three base compositions (supplementary cementitious materials: 20% fly ash, 20% fly ash + 8% silica fume, and 50% slag replacement by weight of cement), and water-to-cementitious ratios of 0.35, 0.41, or 0.47 were investigated here. In this investigation, laboratory experiments were carried out to study the correlation between electrical resistivity and non-steady state chloride ion migration coefficients (Dnssm) of concrete. NT Build 492 was used to determine chloride migration coefficients. Rapid migration tests and resistivity measurements were performed several times over two years, and the non-steady state migration coefficient (Dnssm) vs. resistivity values were correlated. Experimental results show that a good correlation was found between electrical resistivity and Dnssm. Based on the relationships developed from this investigation, it appears that the correlations are age and composition dependent.


2020 ◽  
Vol 5 (2) ◽  
pp. 14
Author(s):  
Matthew S. Sullivan ◽  
Mi G. Chorzepa ◽  
Stephan A. Durham

Ternary blends of cementitious materials are investigated. A cement replacement level of 45% is used for all ternary mixtures consisting of 15% metakaolin and 30% slag replacements. Three metakaolin and two blast furnace slag, referred to as ‘slag’ for short, products commercially available are used to compare performance in ternary blends. A mixture with a 45% fly ash replacement is included to serve as a benchmark for performance. The control mixture contains 422 kg of cement per cubic meter of concrete, and a water-to-cementitious material ratio of 0.43 is used for all mixtures with varying dosages of superplasticizer to retain workability. Mixtures are tested for mechanical properties, durability, and volumetric stability. Mechanical properties include compression, split-cylinder tension, modulus of rupture, and dynamic Young’s modulus. Durability measures are comprised of rapid chloride-ion penetrability, sulfate resistance, and alkali–silica reactivity. Finally, the measure of dimensional stability is assessed by conducting drying shrinkage and coefficient of thermal expansion tests. Results indicate that ternary mixtures including metakaolin perform similarly to the control with respect to mechanical strength. It is concluded that ternary blends perform significantly better than both control and fly ash benchmark in tests measuring durability. Furthermore, shrinkage is reduced while the coefficients of thermal expansion are slightly higher than control and the benchmark.


Buildings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 146
Author(s):  
Jakub Hodul ◽  
Nikol Žižková ◽  
Ruben Paul Borg

Crystalline admixtures and industrial by-products can be used in cement-based materials in order to improve their mechanical properties. The research examined long-term curing and the exposure to environmental actions of polymer–cement mortars with crystalline admixture (CA) and different by-products, including Bengħisa fly ash and Globigerina limestone waste filler. The by-products were introduced as a percentage replacement of the cement. A crystallization additive was also added to the mixtures in order to monitor the improvement in durability properties. The mechanical properties of the mortar were assessed, with 20% replacement of cement with fly ash resulting in the highest compressive strength after 540 days. The performance was analyzed with respect to various properties including permeable porosity, capillary suction, rapid chloride ion penetration and chloride migration coefficient. It was noted that the addition of fly ash and crystalline admixture significantly reduced the chloride ion penetration into the structure of the polymer cement mortar, resulting in improved durability. A microstructure investigation was conducted on the samples through Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS). Crystals forming through the crystalline admixture in the porous structure of the material were clearly observed, contributing to the improved properties of the cement-based polymer mortar.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Xinguo Zhang ◽  
Shichuan Zhang

Cemented paste backfill containing coal gangue and fly ash (CGFACPB) is an emerging backfill technique for coal mines that allows environmentally hazardous coal gangue and fly ash to be reused in the underground goaf. Meanwhile, CGFACPB can provide an efficient ground support and reduce the surface subsidence. Due to the difference of consolidation environment between the laboratory and the field, the mechanical properties of the cemented paste backfill vary significantly. In this paper, the core specimens were collected from an underground coal mine where the CGFACPB was used for coal mining, and the mechanical properties of the collected specimens were investigated. The cores were obtained from the underground coal mine, and then the standard cylinders or discs were prepared in laboratory. The uniaxial compressive strength (UCS), Young’s modulus, and Poisson’s ratio were determined by the compression tests, and the tensile strength was achieved by the Brazilian test. Then the internal friction angle and cohesion were calculated using the improved Mohr–Coulomb strength criterion. The results showed the development of UCS can be divided into four stages, and the final long-term stable value was about 5.1 MPa. The development of Young’s modulus had similar trend. Young’s modulus had a range from 550 MPa to 750 MPa and the mean value of 675 MPa. Poisson’s ratio gradually increased with the underground curing duration and eventually approached the stable value of 0.18. The failure type of compression samples was mainly single-sided shear failure. The development of tensile strength can be divided into two stages, and the stable value of the tensile strength was about 1.05 MPa. The development of cohesion can be divided into four stages, and the stable value was about 1.75 MPa. The stable value of the internal friction angle was about 25°. This study can provide significant references for not only the long-term stability evaluation of CGFACPB in the field but also the design of optimal recipe of the cemented paste backfill (CPB).


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Numan Salah ◽  
Abdulrahman Muhammad Alfawzan ◽  
Abdu Saeed ◽  
Ahmed Alshahrie ◽  
Waleed Allafi

AbstractCarbon nanotubes (CNTs) are widely investigated for preparing polymer nanocomposites, owing to their unique mechanical properties. However, dispersing CNTs uniformly in a polymer matrix and controlling their entanglement/agglomeration are still big technical challenges to be overcome. The costs of their raw materials and production are also still high. In this work, we propose the use of CNTs grown on oil fly ash to solve these issues. The CNTs of oil fly ash were evaluated as reinforcing materials for some common thermoplastics. High-density polyethylene (HDPE) was mainly reinforced with various weight fractions of CNTs. Xylene was used as a solvent to dissolve HDPE and to uniformly disperse the CNTs. Significantly enhanced mechanical properties of HDPE reinforced at a low weight fraction of these CNTs (1–2 wt.%), mainly the tensile strength, Young’s modulus, stiffness, and hardness, were observed. The tensile strength and Young’s modulus were enhanced by ~20 and 38%, respectively. Moreover, the nanoindentation results were found to be in support to these findings. Polycarbonate, polypropylene, and polystyrene were also preliminarily evaluated after reinforcement with 1 wt.% CNTs. The tensile strength and Young’s Modulus were increased after reinforcement with CNTs. These results demonstrate that the CNTs of the solid waste, oil fly ash, might serve as an appropriate reinforcing material for different thermoplastics polymers.


Sign in / Sign up

Export Citation Format

Share Document