Connection Strength of Additive Manufactured Tool Elements to the Substrate

2016 ◽  
Vol 716 ◽  
pp. 389-394 ◽  
Author(s):  
Daniel Junker ◽  
Aleksandr Fedorov ◽  
Oliver Hentschel ◽  
Michael Schmidt ◽  
Marion Merklein

In industry the increasing variety of products leads to shorter product life cycles. For parts made by forging processes this trend results in very high prizes, as the tool costs have to be assimilated with only few parts. To reduce the tool costs new, flexible processes have to be investigated and established in tool manufacturing. Laser based additive manufacturing is noted for its high flexibility and especially laser metal deposition (LMD) gets in the focus of the research as it allows adding material on free formed surfaces. Therefore it is already used for coating and repairing of forming tools. New investigations are made to qualify this process for the production of forging tools. The aim is to generate active elements onto a geometrical simple base unit. Within first investigations the manufacturing of high carbon hot work tool steel 1.2343 was analysed. The measured mechanical properties were similar to those of conventional manufactured material.The focus of this paper is the connection strength of the additively built structures to the substrate. Therefore cylindrical specimens for tensile tests are manufactured with the linkage zone in the parallel area, in which the highest tension will be achieved. To assess the strength of the connection a comparison with conventional manufactured steel will be made. Furthermore specimens produced with various settings will be tested to analyse the influence of the LMD process. Additionally post heat treated samples will be analysed to recognize the effect of the hardening on the strength of the specimens.

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 854 ◽  
Author(s):  
Daniel Junker ◽  
Oliver Hentschel ◽  
Michael Schmidt ◽  
Marion Merklein

For cost-intensive products like automobiles, clients often wish to personalize their product, what forces the industry to create a large diversity of combinable parts. Additionally, the life cycles of many components become shorter. For highly-stressable parts, which are commonly manufactured by forging, the short changeover cycles result in expensive products, as the costs of tools must be offset by the sale of only a few parts. To reduce the tool cost, new, flexible processes have to be established in tool manufacturing. Laser-based additive manufacturing is noted for its high flexibility; notably, Laser Metal Deposition (LMD) is gaining increasing relevance in research, as it is already used for coating and repairing forming tools, this technology makes it possible to add material onto free-formed surfaces. Therefore, investigations are being conducted to qualify this process to produce forging tools. Due to the thermal processes which are required during additive manufacturing, the microstructure of the material differs from that of wrought material. This, in turn, affects the strategy of post heat treatment in order that the required mechanical properties for tools be attained. Within this manuscript, the influence of additive manufacturing on performance characteristics of hot work tool steel X37CrMoV5-1 (1.2343) is analyzed. To investigate the behavior of additively manufactured material during the process chain of tool manufacturing, properties for different states of a heat treatment are characterized by hardness and strength. It was shown that the strength of the additively manufactured material could be increased compared to wrought material by using a tailored heat treatment. The effects that cause this behavior are investigated by comparing the microstructure at different states of heat treatment.


Alloy Digest ◽  
1979 ◽  
Vol 28 (5) ◽  

Abstract A7W is a high-carbon cold-work tool and die steel with high hardenability. It can be heat treated to very high hardness to provide excellent resistance to abrasion and wear. Its applications include liners for sand and shot blasting machines, extrusion dies for ceramics, punches and knives. This datasheet provides information on composition and hardness. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: TS-349. Producer or source: Guterl Special Steel Corporation.


Alloy Digest ◽  
1985 ◽  
Vol 34 (5) ◽  

Abstract STARK is a super high-speed steel having a very high carbon and vanadium content for exceptional abrasion resistance. It is well suited for premium cutting tools of all types, particularly those used for machining abrasive alloys, castings and heat-treated materials. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming, heat treating, machining, and joining. Filing Code: TS-441. Producer or source: Latrobe Steel Company.


Alloy Digest ◽  
1960 ◽  
Vol 9 (7) ◽  

Abstract USS STRUX is an alloy steel designed for use in the heat treated condition at a minimum tensile strength of 280,000 psi. At this very high strength level the steel has adequate ductility and notch toughness for critical applications. This datasheet provides information on composition and tensile properties. Filing Code: SA-100. Producer or source: United States Steel Corporation.


Alloy Digest ◽  
2020 ◽  
Vol 69 (9) ◽  

Abstract Böhler K107 is a high-carbon (2.1%), 12% chromium. 0.7 % tungsten, alloy cold-work tool steel that is used in applications where a very high abrasive wear resistance is needed, but where demands on chipping resistance are small. This datasheet provides information on composition, physical properties, hardness, and elasticity. It also includes information on forming and heat treating. Filing Code: TS-799. Producer or source: voestalpine Böhler Edelstahl GmbH&Co KG.


2016 ◽  
Vol 2016 ◽  
pp. 1-8
Author(s):  
Ronan Miller Vieira ◽  
Gianni Ferreira Alves Moreira ◽  
André Itman Filho ◽  
Estéfano Aparecido Vieira

This work has focused on the development of a new aluminum alloy containing 4.8 wt% of Cu alloy obtained from recycled aluminium cans designed for thixoforming process. After the step of melting and solidification of the alloy in a metallic permanent mold, samples were solution heat treated at 525°C for times ranging from 2 h to 48 h, quenched in water and followed by natural aging. Results have shown the evolution of hardness so from them solubilization solution heat treatment was chosen for 24 h. The best condition for aging was 190°C during 3 h. With this data pieces were thixoforged at 580°C and 615°C corresponding, respectively, to solid fraction (fs) of 0.8 and 0.6. The optimized T6 temper was applied and tensile tests were performed. The mechanical properties obtained are compatible with those obtained for consolidated alloys processed in semisolid state (SS) and after T6 temper hardness increases from 95 HB to 122 HB and the best results were a tensile strength of 324 MPa ± 10 MPa, yield strength of 257 MPa ± 18 MPa, and an elongation of 7.1%  ±  1%. For alloys designed for thixoforming process, these results are in accordance with what was expected whereas globular microstructure, high ductility, and good performance under cyclic conditions are desirable.


DYNA ◽  
2016 ◽  
Vol 83 (195) ◽  
pp. 77-83 ◽  
Author(s):  
María José Quintana Hernández ◽  
José Ovidio García ◽  
Roberto González Ojeda ◽  
José Ignacio Verdeja

The use of Cu and Ti in Zn alloys improves mechanical properties as solid solution and dispersoid particles (grain refiners) may harden the material and reduce creep deformation. This is one of the main design problems for parts made with Zn alloys, even at room temperature. In this work the mechanical behavior of a Zn-Cu-Ti low alloy is presented using tensile tests at different strain rates, as well as creep tests at different loads to obtain the value of the strain rate coefficient m in samples parallel and perpendicular to the rolling direction of the Zn strip. The microstructure of the alloy in its raw state, as well as heat treated at 250°C, is also analyzed, as the banded structure produced by rolling influences the strengthening mechanisms that can be achieved through the treatment parameters.


2014 ◽  
Vol 217-218 ◽  
pp. 471-480
Author(s):  
Ivano Gattelli ◽  
Gian Luigi Chiarmetta ◽  
Marcello Boschini ◽  
Renzo Moschini ◽  
Mario Rosso ◽  
...  

This paper concerns with the optimisation of the innovative rheocasting process to produce a new generation of brake callipers, characterised by very high reliability and strength. The attained very promising properties favoured their use on a very high performance car and the presented technique can be further extended for other important challenging applications. The prototype components are produced using T6 heat treated A357 alloy. Results on the samples machined directly from the produced callipers are in detail described and analysed. Pieces exhibiting some small defects, individuated by non-destructive tests, as well as defectless pieces have been underlined to severe industrial tests, e.g. high pressure tight, as well as severe bench tests, and it has been observed that the proposed technological process assure the fulfilment of the requirements contained in standards.


2021 ◽  
Vol 883 ◽  
pp. 159-166
Author(s):  
Emad Scharifi ◽  
Moritz Roscher ◽  
Steffen Lotz ◽  
Ursula Weidig ◽  
Eric Jägle ◽  
...  

Inspired by steel forming strategies, this study focuses on the effect of differential cooling on mechanical properties and precipitation kinetics during hot stamping of high strength AA7075 alloy. For this aim, different forming strategies were performed using segmented and differentially heated forming tools to provide locally tailored microstructures. Upon processing, uniaxial tensile tests and hardness measurements were used to characterize the mechanical properties after the aging treatment. Microstructure investigations were conducted to examine the strengthening mechanisms using the electron channeling contrast imaging (ECCI) technique in a scanning electron microscope (SEM). Based on the obtained results, it can be deduced that the tool temperatures play a key role in influencing the mechanical properties. Lower tool temperatures result in higher material strength and higher tool temperatures in lower mechanical properties. By changing the cooling rate with the use of differently heated forming tools, the mechanical properties can be controlled. Microstructure investigations revealed the formation of very fine and homogeneously distributed particles at cooled zones, which were associated with elevated mechanical properties due to the suppression of second phase particle formation during cooling. In contrast, coarse particles were observed at lower cooling rates, explaining the lower material strength found in these zones.


Sign in / Sign up

Export Citation Format

Share Document