Monitoring and Material Simulation of Automatic-Cooling System for Waterfowl Incubator

2016 ◽  
Vol 723 ◽  
pp. 268-273
Author(s):  
Huaang Youh Hurng ◽  
Yung Jia Shen

In order to reduce the required manpower and biosecurity control risk for waterfowl breeding eggs, this study developed waterfowl automatic eggs cooling incubator which using the concept of pre-heating and pre-wetting type front control thermal system and add the automatic watering eggs cooling system, trolley egg rack, pneumatic eggs overturning system and monitoring system. The front control thermal system preheats and pre-wet the air to the required environment for hatching and import into incubator for the hatching test. The test results show that the hatching environment uniformity of automatic eggs cooling incubator developed by this study is better than the traditional incubator’s environment. The monitoring system can stable control the variation for three hatching parameters of temperature, humidity and carbon dioxide concentration. Besides the combination of automatic watering eggs cooling system for hatching process can significantly reduce the required manpower for watering eggs cooling and biosecurity control risk, the average hatching ratio is 82.06% that can satisfy the requirement of general professional goose breeding eggs incubator. The test using computational fluid dynamics simulation software (CFD) to simulate the variable turbulent wind speed. On the premise of using temperature as the respondence to conduct the optimization design of response surface methodology. The results shows that the incubator temperature standard deviation decreased from 0.26°C to 0.14°C when three turbulent wind speed changed from 4.25 m/s, 3.50 m/s and 4.63 m/s to 2 .00m/s, 5 .00m/s and 3.81 m/s. There is a further increase for the uniformity of the temperature field.

2013 ◽  
Vol 724-725 ◽  
pp. 1474-1477
Author(s):  
Xiao Ming Zhang ◽  
Yang Gao ◽  
Xiao Zhang

Applied FLUENT simulation software to research the influence of tunnel length, tunnel entrance velocity, tunnel equivalent diameter and tunnel buried depth four important factors on the tunnel wind cooling system in Shenyang area. The results show that, with the increase of tunnel length and tunnel buried depth and with the decrease of tunnel entrance velocity and tunnel equivalent diameter, the outdoor air which passed into the tunnel cooling amplitude increases. For the tunnel wind cooling system optimization design in Shenyang area and the surrounding areas, the advices are that tunnel buried depth should not be more than 6m and tunnel entrance velocity should not be more than 5m/s.


2021 ◽  
Author(s):  
Yasong Sun ◽  
Ruihuai Bai

Abstract With the development of modern technology and the economy, environmental protection and sustainable development have become the focus of global attention. In this paper, the promotion and development of electric vehicles have bright prospects, and they are also facing many challenges. Under different operating conditions, various safety problems of electric vehicles emerge one after another, especially the potential safety hazards caused by battery overheating that threaten electric vehicles' development process. In this paper, a new indirect liquid cooling system is designed and optimized for cylindrical lithium-ion batteries. A variety of design schemes for different cooling channel structures and cooling liquid inlet direction are proposed, and the corresponding solid-fluid coupling model is established. COMSOL Multiphysics simulation software models, simulates and analyses cooling systems. An approximate model is constructed using the Kriging method,and it is considered to optimize the battery cooling system and improve the optimization results. Sensitivity parameter analysis and system structure optimization design are also carried out on the influencing factors of the battery thermal management. The results indicate it effectively balances and reduces the maximum core temperature and temperature difference of the battery pack. Compared with the original design, from the optimized design of these factors, which based on method of the non-dominated sorting genetic algorithm (NSGA-II), there is an excellent ability on the optimized thermal management system to dissipate thermal energy and keep the overall cooling uniformity of the battery and thermal management system. Furthermore, under thermal abuse conditions, the optimized system can also prevent thermal runaway propagation. In summary, this research is expected to provide some practical suggestions and ideas for the engineering and production applications and structural optimization design carried by electric vehicles.


Author(s):  
Rong Lu ◽  
Jianping Yuan ◽  
Longyan Wang ◽  
Yanxia Fu ◽  
Feng Hong ◽  
...  

Automotive electronic cooling pump is the core component of the new energy vehicle cooling system, with the exclusive advantages of high efficiency and low vibration which will bring a broad market prospect. However, the rotor–volute interaction between impeller blades and volute tongue is a severe problem which can result in the performance degradation and unsteady flow fields of pumps. The influences of volute tongue angle on hydraulic performance and fluid stability are investigated in this study. The flow loss inside the pump is visualized by means of the entropy production theory, while the pulsations of pressure and radial force of the rotor are compared by unsteady computational fluid dynamics simulation. The results show that entropy production is an effective tool to visualize the loss distribution which allows accurate assessment of pump performance. Specifically, the pressure pulsation intensity near the volute tongue is larger and the main frequency of the radial force is the blade passing frequency. With the increase of volute tongue angle, the hydraulic efficiency under large flow conditions is improved, with an alleviated rotor–volute interaction intensity, and greatly reduced fluctuations of pressure and radial force. The main significance of this study is that it provides a new perspective to investigate the optimization design for automobile electronic cooling pumps.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3298
Author(s):  
Gianpiero Colangelo ◽  
Brenda Raho ◽  
Marco Milanese ◽  
Arturo de Risi

Nanofluids have great potential to improve the heat transfer properties of liquids, as demonstrated by recent studies. This paper presents a novel idea of utilizing nanofluid. It analyzes the performance of a HVAC (Heating Ventilation Air Conditioning) system using a high-performance heat transfer fluid (water-glycol nanofluid with nanoparticles of Al2O3), in the university campus of Lecce, Italy. The work describes the dynamic model of the building and its heating and cooling system, realized through the simulation software TRNSYS 17. The use of heat transfer fluid inseminated by nanoparticles in a real HVAC system is an innovative application that is difficult to find in the scientific literature so far. This work focuses on comparing the efficiency of the system working with a traditional water-glycol mixture with the same system that uses Al2O3-nanofluid. The results obtained by means of the dynamic simulations have confirmed what theoretically assumed, indicating the working conditions of the HVAC system that lead to lower operating costs and higher COP and EER, guaranteeing the optimal conditions of thermo-hygrometric comfort inside the building. Finally, the results showed that the use of a nanofluid based on water-glycol mixture and alumina increases the efficiency about 10% and at the same time reduces the electrical energy consumption of the HVAC system.


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 927-934
Author(s):  
Tao Song ◽  
Chao Liu ◽  
Hengxuan Zhu ◽  
Min Zeng ◽  
Jin Wang

Abstract Normal operation of gas turbines will be affected by deposition on turbine blades from particles mixed in fuels. This research shows that it is difficult to monitor the mass of the particles deposition on the wall surface in real time. With development of electronic technology, the antenna made of printed circuit board (PCB) has been widely used in many industrial fields. Microstrip antenna is first proposed for monitoring particles deposition to analyse the deposition law of the particles accumulated on the wall. The simulation software Computer Simulation Technology Microwave Studio (CST MWS) 2015 is used to conduct the optimization design of the PCB substrate antenna. It is found that the S11 of vivaldi antenna with arc gradient groove exhibits a monotonous increase with the increase of dielectric layer thickness, and this antenna is highly sensitive to the dielectric layer thickness. Moreover, a cold-state test is carried out by using atomized wax to simulate the deposition of pollutants. A relationship as a four number of times function is found between the capacitance and the deposited mass. These results provide an important reference for the mass detection of the particle deposition on the wall, and this method is suitable for other related engineering fields.


2017 ◽  
Vol 21 ◽  
pp. 102-107
Author(s):  
Constantin Sorin Scutarasu ◽  
Dan Diaconu-Şotropa ◽  
Marinela Barbuta

Important goals in the fire safety design, such as preventing loss of life and goods damage, are achieved by maintaining the stability of structures exposed to fire for a period of time established by norms and standards. Real fire scenarios confirm that the specific technical regulations which actually have a prescriptive character (both national and international) do not deal with sufficient possibilities regarding the assessment of structural fire safety. The new approach on structural safety, based on engineering notions, gives us additional prospects on it and it is included in the issues of the fire safety design of structures. A relatively new field of study, known by a few professionals focused on fire safety (but well acknowledged in the research area), fire safety design met with lots of changes and restructuring of the governing concepts and procedures and of the information with which they operate, due to the fast accumulation of experience in this area of engineering activity. Consequently, after countries such as Australia, Canada, New Zeeland or USA provided towards professionals specific technical regulations for fire safety design, groups of experts in these aforementioned countries have joined their forces to try to diminish the differences that exists between those regulations and to give a unitary character to them, a better conceptualized engineering approach of the fire safety design. The result: occurrence of the publication International Fire Engineering Guidelines (last edition from 2005). The systematic approach of fire safety design in constructions pointed, once again, the possibility of modular organization of this field of study, the relations between modules being established according to the objective or objectives in the fire safety design for a specified building. This article aims to put forward, from this modularized perspective, the study of the fire safety design of a building exposed to fire; hence, the practical part of the article exhibits the numerical simulation of initialization and development of the fire process for a large scale religious building. The main features of the building represent the amount of space that facilitates the spreading of smoke and warm gases and which increases the risk of damaging the structural reinforced concrete elements. Application calls to specific numerical simulation with a higher degree of credibility, such as those realized by the FDS (Fire Dynamics Simulation) software.


2012 ◽  
Vol 182-183 ◽  
pp. 1056-1059
Author(s):  
Yan Jun Zhao ◽  
Wen Qing Ge ◽  
Cheng Xu

Based on ADAMS, The dynamics simulation software of individual soldier automatic weapon was developed. Parameter modification, remodeling, dynamics simulation, simulation replay, obtain and save of results of Individual Soldier Automatic weapon model by finely Chinese interface were completed. The software brings convenient for user,and improves design efficiency. The results show that the software is reliable.


2015 ◽  
Vol 741 ◽  
pp. 536-540
Author(s):  
Xiao Zhi Qiu ◽  
Yan Ming Zhao ◽  
Bao Hua Huang ◽  
Wei Xu

Based on the analysis of indirect air cooling system, a numerical simulation model of indirect air cooling system was constructed by ANSYS software. According to the different wind speed condition, the temperature characteristic of indirect air cooling system was analyzed. The simulation results show that with the increase of wind speed, the ventilation and heat release of the indirect air cooling system change greatly. It provides a theoretical basis for the design of the wind-proof device of indirect air cooling system.


2013 ◽  
Vol 850-851 ◽  
pp. 355-358
Author(s):  
Dong Du

This paper describes the use of Fluid Flow Simulation Software to model a passenger aircraft engine environmental control system. The analysis simulates the cooling pack and the engine distribution system in a single model.The engine environmental system is very important for engine working efficiently. Using AMEsim software to simulate the cooling system can make it easily and clearly. The influence of the heat component and the fan operating is studied also. Through the analysis of the cooling system, we know that with the help of fan, the system can get additional air in the radiator and make the temperature decrease consequently.


Sign in / Sign up

Export Citation Format

Share Document