CATPUAL - An Innovative and High-Performance Hybrid Laminate with Carbon Fibre-Reinforced Thermoplastic Polyurethane

2017 ◽  
Vol 742 ◽  
pp. 294-301 ◽  
Author(s):  
Camilo Zopp ◽  
Daisy Nestler ◽  
Jürgen Tröltzsch ◽  
Maik Trautmann ◽  
Sebastian Nendel ◽  
...  

In consideration of environmental aspects and limited availability of resources, the focus of automotive and aerospace industry lies on significant weight optimisations especially for moving loads. In this context, innovative lightweight materials as well as material combinations need to be developed. A considerable potential for lightweight structures can be found in fibre- or textile-reinforced semi-finished products. Due to their specific characteristics and extraordinary structural diversity, thermoset and thermoplastic matrix systems can be used. In particular, carbon fibres as reinforcing components combined with a thermoplastic matrix polymer are able to create new high-performance applications. Besides the significant lightweight characteristics of the fibre-plastic-composites, in some instances contrary requirements must be satisfied in many areas, such as strength and ductility. In this field, the combination of fibre-reinforced polymers with aluminium or titanium sheets creates unique composite materials, so called hybrid laminates, which fulfil the unusual expectations.The focus of the current study lies on the development of a new thermoplastic hybrid laminate named CATPUAL (CArbon fibre-reinforced Thermoplastic PolyUrethane/ALuminium laminate). The structure of the laminate is an alternating sequence of thin aluminium sheets (EN AW 6082-T4) and fibre-reinforced thermoplastic polyurethane (TPU). The individual layers are consolidated to each other by using a hot pressing process. First results showed that the impregnation capability of thermoplastic polyurethane surpasses any other commercially available hybrid laminates. Furthermore, the mechanical properties regarding bending strength and interlaminar shear strength are exceeding the state of the art drastically.

2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Camilo Zopp ◽  
Daisy Nestler ◽  
Nadine Buschner ◽  
Carola Mende ◽  
Sven Mauersberger ◽  
...  

For several years, thermoplastic hybrid laminates form a new class in the field of material compounds. These laminates consist of fibre-reinforced plastic prepregs and metal layers in alternating order. Compared to conventional thermosetting multilayer composites, these laminates are suitable for large-scale production and can be manufactured with significantly reduced cycle times in the thermoforming process.  In the framework of this contribution, the influence of the cooling rate of carbon fibre-reinforced thermoplastic composites and hybrid laminates was investigated with regard to crystallinity and the resulting mechanical properties. Polyamide 6 and thermoplastic polyurethane as matrix systems were examined, in particular.Additionally, the differential scanning calorimetry was used in order to investigate the influence of the cooling rate on the crystallisation behaviour. It could be determined that the cooling rate has a limited influence on the crystallisation of polyamide 6 and this influences the mechanical properties. Furthermore, a reliance of process parameters on the characteristics profile of composite materials and material compounds with thermoplastic polyurethane could be identified. Depending on process conditions, tensile, bending, and interlaminar shear properties fluctuate up to 20 % in fibre-reinforced laminates and up to 32 % in hybrid laminates. Moderate to fast cooling rates result in optimum mechanical characteristics of tensile properties in fibre-plastic-compounds. Fast to very fast cooling rates are advisable for bending and interlaminar shear properties. Highest tensile and bending characteristics are achieved in hybrid laminates by using fast to very fast cooling rates, while interlaminar shear properties tend to be highest in slow to moderate cooling rates.


2017 ◽  
Vol 742 ◽  
pp. 473-481 ◽  
Author(s):  
Thomas Köhler ◽  
Tim Röding ◽  
Thomas Gries ◽  
Gunnar Seide

Carbon fibre reinforced plastics (CFRPs) can be classified according to whether the matrix is a thermoset or a thermoplastic. Thermoset-matrix composites are by tradition far more common, but thermoplastic-matrix composites are gaining in importance. There are several techniques for combining carbon fibres with a thermoplastic-matrix system. The composite’s characteristics as well as its manufacturing costs are dependent on the impregnation technique of the carbon fibre and the textile structure respectively. Carbon fibre reinforced thermoplastics (CFRTPs) are suitable for fast and economic production of high-performance components. Despite the higher material costs thermoplastic-matrix systems show cost benefits in comparison to thermoset-matrix due to substantial time savings in the production process. Moreover CFRTPs can be manufactured in large production runs. The commingling of reinforcement fibres with matrix fibres is a well-established process. Another approach is the coating of the carbon fibre with a thermoplastic subsequent to the carbon fibre production (carbonization, activation and deposition of sizing). The latter point is currently subject of research and is a promising method for further increasing the production speed. This paper presents the different possibilities of impregnating carbon fibres with a thermoplastic matrix. Diverse technologies along the process chain of the CFRTP production will be discussed.


2020 ◽  
Vol 847 ◽  
pp. 40-45
Author(s):  
Tomasz Osiecki ◽  
Colin Gerstenberger ◽  
Tristan Timmel ◽  
Mariusz Frankiewicz ◽  
Robert Dziedzic ◽  
...  

Because of their high specific stiffness and strength, fiber reinforced plastics (FRP) are preferred lightweight materials. Recent developments show a growing industrial interest in the integration of thermoplastic FRP in complex structures for high volumes. However, there are still shortcomings for these materials concerning the insufficient energy absorption in case of failure and the limited opportunities available for the assembly with other components. Improvements in the crash performance can be achieved for instance with the selective reinforcement of the FRP structure with ductile metallic inserts. The present study shows the interlaminar shear strength and scanning electron microscope (SEM) samples of a novel load optimized hybrid composite consisting of a continuous fiber-reinforced thermoplastic matrix, in which a metal core is integrated.


2006 ◽  
Vol 15 (6) ◽  
pp. 096369350601500
Author(s):  
Peter Mitschang ◽  
Amol Ogale

Interlaminar shear strength and flexural bending strength of stitched and non-stitched carbon fibre reinforced polymer (CFRP) laminates were studied with reference to three different sewing threads. The preforms were stitched through-the-thickness by two different hybrid carbon fibre threads and a Zylon (polyphenylen-2,6-benzobisoxazol, PBO) thread with 16 stitches/cm2 stitch density. The short beam interlaminar shear strength of the laminate increases where as flexural bending strength of the laminate shows mixed results depending on the stitching direction. Carbon fibre threads show relatively less positive influence on the laminate properties than the PBO thread. The results of this study differ partly from the literature studies.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1430
Author(s):  
Maik Trautmann ◽  
Selim Mrzljak ◽  
Frank Walther ◽  
Guntram Wagner

Multi layered lightweight material compounds such as hybrid laminates are composed of different layers of materials like metals and unidirectional fibre-reinforced plastics and offer high specific strength. They can be individually tailored for applications like outer cover panels for aircraft and vehicles. Many characteristics especially layer structure, volume contents of the embedded materials as well as layer surface adhesion determine the performance of a hybrid laminate. In this study, the influence of layer structure and metal volume content are evaluated with regard to the mechanical properties of the recyclable hybrid laminate CAPAAL (carbon fibre-reinforced plastics/aluminium foil laminate), which consists of the aluminium alloy AA6082 and a graded structure of glass and carbon fibre-reinforced polyamide 6. Hybrid laminates with different ratios of the fibre-reinforced plastic and numbers of aluminium layers were manufactured by thermal pressing. The consolidation quality of in total four laminate structure variations, including 2/1 and 3/2 metal-to-fibre-reinforced plastic layer structures with fibre orientation variation, were investigated by light microscopy through cross-sections and further on computed tomography. For determination and evaluation of the mechanical properties metrologically instrumented quasi-static tensile and three-point bending tests, as well as tension-tension fatigue tests for the establishment of S-N curves were performed. The results were correlated to the microstructural observations, revealing significant influence by the consolidation quality. The layer structure proved to have a proportional impact on the increase of quasi-static tensile and flexure strength with a decrease in metal volume content. Orienting some of the fibre-reinforced plastic layers in ±45° leads to a more evenly distributed fibre alignment, which results in a higher consolidation quality and less anisotropic bending properties. Fatigue results showed a more complex behaviour where not only the metal volume content seems to determine the fatigue loading capability, but also the number of metal-fibre-reinforced plastic interfaces, hinting at the importance of stress distribution between layers and its longevity over fatigue life.


2014 ◽  
Vol 907 ◽  
pp. 139-149 ◽  
Author(s):  
Eckart Uhlmann ◽  
Florian Heitmüller

In gas turbines and turbo jet engines, high performance materials such as nickel-based alloys are widely used for blades and vanes. In the case of repair, finishing of complex turbine blades made of high performance materials is carried out predominantly manually. The repair process is therefore quite time consuming. And the costs of presently available repair strategies, especially for integrated parts, are high, due to the individual process planning and great amount of manually performed work steps. Moreover, there are severe risks of partial damage during manually conducted repair. All that leads to the fact that economy of scale effects remain widely unused for repair tasks, although the piece number of components to be repaired is increasing significantly. In the future, a persistent automation of the repair process chain should be achieved by developing adaptive robot assisted finishing strategies. The goal of this research is to use the automation potential for repair tasks by developing a technology that enables industrial robots to re-contour turbine blades via force controlled belt grinding.


2021 ◽  
Vol 47 (2) ◽  
pp. 1-28
Author(s):  
Goran Flegar ◽  
Hartwig Anzt ◽  
Terry Cojean ◽  
Enrique S. Quintana-Ortí

The use of mixed precision in numerical algorithms is a promising strategy for accelerating scientific applications. In particular, the adoption of specialized hardware and data formats for low-precision arithmetic in high-end GPUs (graphics processing units) has motivated numerous efforts aiming at carefully reducing the working precision in order to speed up the computations. For algorithms whose performance is bound by the memory bandwidth, the idea of compressing its data before (and after) memory accesses has received considerable attention. One idea is to store an approximate operator–like a preconditioner–in lower than working precision hopefully without impacting the algorithm output. We realize the first high-performance implementation of an adaptive precision block-Jacobi preconditioner which selects the precision format used to store the preconditioner data on-the-fly, taking into account the numerical properties of the individual preconditioner blocks. We implement the adaptive block-Jacobi preconditioner as production-ready functionality in the Ginkgo linear algebra library, considering not only the precision formats that are part of the IEEE standard, but also customized formats which optimize the length of the exponent and significand to the characteristics of the preconditioner blocks. Experiments run on a state-of-the-art GPU accelerator show that our implementation offers attractive runtime savings.


2021 ◽  
Author(s):  
Jifa Zhang ◽  
Yuan Jiang ◽  
Leah F Easterling ◽  
Anton Anster ◽  
Wanru Li ◽  
...  

Organosolv treatment is an efficient and environmentally friendly process to degrade lignin into small compounds. The capability of characterizing the individual compounds in the complex mixtures formed upon organosolv treatment...


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ajeet Kumar Pandey ◽  
Vinod Kumar Mishra ◽  
Ramesh Chand ◽  
Sudhir Navathe ◽  
Neeraj Budhlakoti ◽  
...  

AbstractSpot blotch and terminal heat are two of the most important stresses for wheat in South Asia. A study was initiated to explore the use of spelt (Triticum spelta) to improve tolerance to these stresses in spring wheat (T. aestivum). We assessed 185 recombinant inbred lines (RILs) from the cross T. spelta (H + 26) × T. aestivum (cv. HUW234), under the individual stresses and their combination. H + 26 showed better tolerance to the single stresses and also their combination; grain yield in RILs was reduced by 21.9%, 27.7% and 39.0% under spot blotch, terminal heat and their combined effect, respectively. However, phenological and plant architectural traits were not affected by spot blotch itself. Multivariate analysis demonstrated a strong negative correlation between spikelet sterility and grain yield under spot blotch, terminal heat and their combination. However, four recombinant lines demonstrated high performance under both stresses and also under their combined stress. The four lines were significantly superior in grain yield and showed significantly lower AUDPC than the better parent. This study demonstrates the potential of spelt wheat in enhancing tolerance to spot blotch and terminal heat stresses. It also provides comprehensive evidence about the expression of yield and phenological traits under these stresses.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Christie ◽  
Adrian Abel

Abstract This chapter provides an overview of the structural and synthetic chemistry, and the industrial applications, of dioxazine pigments, a small group of high performance organic pigments. The color violet (or purple) has frequently assumed a prominent position in history, on account of its rarity and cost. The natural colorant Tyrian purple and the first synthetic textile dye, Mauveine, are prime examples of this unique historical feature. CI Pigment Violet 23, also referred to as Dioxazine Violet or Carbazole Violet, is one of the most universally used organic pigments, by far the most important industrial pigment in the violet shade area. Dioxazine Violet is also unique as the dominant industrial violet pigment providing a brilliant, intense violet color and an excellent all-round set of fastness properties. The pigment has a polycyclic molecular structure, originally described wrongly as a linear arrangement, and later shown to adopt an S-shaped arrangement on the basis of X-ray structural analysis. Two other dioxazine pigments are of rather lesser importance. The synthesis and manufacturing route to CI Pigment Violet 23 is described in the review. Finally, a survey of the principal current applications of the individual dioxazine pigments is presented.


Sign in / Sign up

Export Citation Format

Share Document