Measuring Wear in a Fretting Test with a Confocal Microscope

2018 ◽  
Vol 774 ◽  
pp. 461-466
Author(s):  
G. Jordano ◽  
Carlos Navarro ◽  
Jesús Vázquez ◽  
Jaime Domínguez

Wear has been analyzed in several fretting fatigue tests with spherical contact performed on Al 7075 T651. The contact zone leaves a circular scar on the surface, which is easily detected because of the damage. Inside the contact zone, and almost concentric, another circular region called the stick zone can be distinguished. The annulus around it is called the sliding zone. The latter appears clearly damaged by wear and oxidation. The objective of this paper is to measure the size of these zones and their position, measure the wear in the sliding zone and establish a relation with the stresses at the contact. This has been done using a confocal microscope which gives a map of the surface: depth at each position. Given that the scar does not appear as an ideal circumference, the images have gone through a process of digital processing in order to obtain the geometric characteristics. Finally, the experimental data is combined with the analytical calculations through Archard wear model where a material parameter is calculated at each point in the sliding zone. It can be observed that despite the very different pressures and sliding distances in this zone, the material wear parameter is almost constant and similar to the ones in standard tests.

Author(s):  
M Amiri ◽  
M Modarres

A series of fatigue tests is carried out to investigate the behavior of microcrack initiation and propagation in Al 7075-T6. Plate specimens with semi-circular single edge notch are tested under uniaxial loading at different load amplitudes. Optical microscopy is used to detect the initiation and growth of short cracks. Continuum damage mechanics is used to model the crack initiation. After the initiation, crack growth is studied using fracture mechanics models. For both regions of crack initiation and growth, Bayesian estimation method is used to account for uncertainties in the parameters of the model. Results of the entire fatigue life, including initiation and growth, are compared with experiments. Good agreement is observed.


2014 ◽  
Vol 627 ◽  
pp. 81-84 ◽  
Author(s):  
Sergio Baragetti ◽  
Riccardo Gerosa ◽  
Francesco Villa

7075-T6 aluminium alloy is commonly adopted in high performance structures and components. Its fatigue behaviour is however dramatically worsened by exposure to aggressive environments. The deposition of PVD coatings, which are commonly adopted to increase the surface properties of structural elements in terms of hardness, contact fatigue and wear resistance, could be beneficial also for the fatigue behaviour of a 7075-T6 substrate in an aggressive environment. In the present work, Diamond Like Carbon (DLC) PVD coated 7075-T6 specimens immersed in methanol have been analysed, by means of step-loading rotating bending fatigue tests (R = -1) at 2·105 cycles. Coated specimens were tested in laboratory air for comparison, and uncoated polished samples were studied in both the environments to obtain reference values. SEM micrographs of the fracture surfaces were taken to investigate the effects of the corrosive environment on the failure mechanism.


1961 ◽  
Vol 83 (2) ◽  
pp. 213-222 ◽  
Author(s):  
B. Sternlicht ◽  
P. Lewis ◽  
P. Flynn

The fatigue life of rolling-element bearings has been the subject of numerous investigations. Most recently the influence of the lubricant on fatigue failure has been given added emphasis. This paper presents the results of an investigation which was undertaken in order to gain a better understanding of fluid behavior in the contact zone and to determine the influence of the lubricant on rolling contact fatigue life. The investigation had three distinct facets: (a) An analysis was performed on pressure and temperature distribution within the contact zone of rolling disks. In the analysis Reynolds, energy, and elasticity equations were solved simultaneously and fluid properties, such as viscosity dependence on temperature and pressure were included. (b) Dynamic stresses in two contacting cylindrical bodies were measured by means of photoelastic techniques. These measurements were used to test the validity of the analytically predicted stress distribution. (c) High-speed ball-bearing fatigue tests were conducted with two specially blended oils which had the same viscosity at the bearing inlet temperature, but widely different pressure viscosity characteristics. The physical characteristics of the oils were the same as those considered in the analysis. The paper summarizes the work and presents a hypothesis for the failure mechanism.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 586 ◽  
Author(s):  
Vicente Martín ◽  
Jesús Vázquez ◽  
Carlos Navarro ◽  
Jaime Domínguez

Shot peening is a mechanical treatment that induces several changes in the material: surface roughness, increased hardness close to the surface, and, the most important, compressive residual stresses. This paper analyzes the effect of this treatment on alloy Al 7075-T651 in the case of fretting fatigue with cylindrical contact through the results of 114 fretting fatigue tests. There are three independent loads applied in this type of test: a constant normal load N, pressing the contact pad against the specimen; a cyclic bulk stress σ in the specimen; and a cyclic tangential load Q through the contact. Four specimens at each of 23 different combinations of these three parameters were tested—two specimens without any treatment and two treated with shot peening. The fatigue lives, contact surface, fracture surface, and residual stresses and hardness were studied. Improvement in fatigue life ranged from 3 to 22, depending on fatigue life. The relaxation of residual-stress distribution related to the number of applied cycles was also measured. Finally, another group of specimens treated with shot peening was polished and tested, obtaining similar lives as in the tests with specimens that were shot-peened but not polished.


2013 ◽  
Vol 739 ◽  
pp. 431-436
Author(s):  
Ho Kyung Kim

In order to evaluate the fatigue endurance for an ultra lightweight inline skate frame, FEM analyses was performed. The tensile properties and an S-N curve were determined through tensile and fatigue tests on a modified Al-7075+Sc alloy. The yield and ultimate tensile strengths were 553.3 MPa and 705.5 MPa, respectively. The fatigue endurance limit of this alloy was 201.2 MPa. To evaluate the fatigue endurance of the inline skate frame, the S-N data were compared with the stress analysis results through FEM analyses of the frame. The maximum von Mises stress of the frame was determined to be 106 MPa through FEM analysis of the frame, assuming that the skater weight is 75 kg. Conclusively, on the basis of the fatigue limit, the inline skate frame has a safety factor of approximately 2.0.


2020 ◽  
Vol 14 (4) ◽  
pp. 206-210
Author(s):  
Myron Chernets ◽  
Myroslav Kindrachuk ◽  
Anatolii Kornienko ◽  
Alina Yurchuk

Abstract The method of model triboexperimental studies to determine the basic mathematical model parameters of materials wear resistance at sliding friction is considered. The quantitative relative experimental characteristics of wear resistance of glass fibre and carbon fibre reinforced polyamide used in metal-polymer gear couple have been determined. Wear resistance functions of these functional polymeric composites have been established as the basic ones in the tribokinetic mathematical model of material wear for sliding friction conditions. Also, according to the conducted researches, wear resistance diagrams were constructed. They may be used as graphical indicators of wear resistance in the required range of specific friction forces. The dependences that connect the characteristic functions of wear resistance of these materials (obtained by the developed mathematical tribokinetic wear model) with linear wear and gearing service life are presented.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2025
Author(s):  
Bel Abbes Bachir Bouiadjra ◽  
S. M. A. K. Mohammed ◽  
Faycal Benyahia ◽  
Abdulmohsen Albedah

Repair of aeronautical structures by composite patch bonding has shown its effectiveness in several studies during the last few decades. This repair technique leads to a retardation in the propagation of repaired cracks via load bridging across the patch throughout the adhesive layer, interfacing it with the repaired structure. The purpose of this study is to analyze the behavior of patch-repaired cracks present in thin plates made of aluminum alloy 7075-T6 and subjected to a single tensile overload. The sequence of application of overload on the fatigue behavior was also studied. Fatigue tests were conducted on Al 7075-T6 notched specimens where crack growth and number of cycles to failure were monitored for different patching/overload scenarios. A detailed fractographic study was performed on failed specimens to analyze the micromechanical behavior of the crack growth related to each scenario. The obtained results showed that the application of the overload before bonding the patch leads to an almost infinite fatigue life of the repaired plates.


2009 ◽  
Vol 44 (6) ◽  
pp. 503-515 ◽  
Author(s):  
C Navarro ◽  
S Muñoz ◽  
J Domínguez

This paper analyses various procedures for predicting crack growth as a function of the number of cycles in fretting fatigue tests with spherical contact. The evolution of the crack is calculated using fracture mechanics starting from an initial defect. Different growth laws are considered, including the behaviour of small cracks, by modifying either the threshold or the effective stress intensity factor value. Theoretical results are compared with those obtained in tests on Al 7075 T651. Results show that, although the final lives predicted by the different laws are similar, the predicted crack evolution does vary, and the most precise law is the one that modifies the growth threshold.


2018 ◽  
Vol 25 (03) ◽  
pp. 1850067 ◽  
Author(s):  
G. H. MAJZOOBI ◽  
P. AZHDARZADEH

Fretting fatigue life is traditionally estimated by experiment. The objective of this work is to introduce a special approach for estimation of axial fretting fatigue life at elevated temperatures from plain fatigue test based on the critical distance theory. The method uses Fatemi–Socie parameter as a multiaxial criterion to compute the stress multiaxiality on focus path. This method considers only elastic behavior for materials, and two characteristic diagrams are obtained from plain fatigue tests on two U-shaped and V-shaped notched specimens. The results showed reasonable agreement between the predictions by the proposed method and the experiments for ambient temperature. For elevated temperatures, the results indicated that the predicted fretting fatigue life was considerably overestimated in the low cycle fatigue (LCF) regime and underestimated in the high cycle fatigue (HCF) region with respect to experimental measurements. The reason for such discrepancy is believed to be due to the complex behavior of AL 7075-T6, which exhibits at elevated temperatures because of the problems such as aging, oxidation and reduction of strength.


2014 ◽  
Vol 14 (1) ◽  
pp. 71-74 ◽  
Author(s):  
M. Maj ◽  
K. Pietrzak

Abstract The paper presents the results of comparative tests of the fatigue properties conducted on two non-ferrous alloys designated as Al 6082 and Al 7075 which, due to the satisfactory functional characteristics, are widely used as engineering materials. The fatigue tests were carried out using a proprietary, modified low cycle test (MLCF). Particular attention was paid to the fatigue strength exponent b and fatigue ductility exponent c. Based on the tests carried out, the results comprised within the range defined by the literature were obtained. These results prove a satisfactory sensitivity of the method applied, its efficiency, the possibility of conducting tests in a fully economical way and above all the reliability of the obtained results of the measurements. Thus, the thesis has been justified that the modified low cycle fatigue test (MLCF) can be recommended as a tool used in the development of alloy characteristics within the range of low-cycle variable loads


Sign in / Sign up

Export Citation Format

Share Document