Evaluation on Roles of Activated Silicon and Aluminum Oxides for Formation of Geopolymer from Red Mud and Silica Fume

2018 ◽  
Vol 777 ◽  
pp. 513-517 ◽  
Author(s):  
Van Quang Le ◽  
Minch Quang Do ◽  
Minh Duc Hoang ◽  
Thanh Phong Dang ◽  
Thu Ha Bui ◽  
...  

In this study, the alkaline solutions (NaOH) with concentration from 1M to 10M, red mud (RM) and silica fume (SF) were used as reactors in geopolymer reactions. RM contains 7.40% SiO2 and 13.65% Al2O3, SF has 94.50% SiO2, but only the activated oxides can participate into the geopolymer reactions. The activity of the oxides was investigated by measuring the dissolution of RM and SF in different concentrations of NaOH. Characteristics of the geopolymer samples were tested for compressive strength and softening-coefficient, its microstructure was analyzed by using X – ray diffraction (XRD). The experimental results were indicated that activated SiO2 is the highest exist in SF. In the structure of geopolymers, the silica can be bonded directly to each other (Si-Si) or linked through “most” oxygen (Si-O-Si) to form independent polymer chains, while aluminum themselves cannot create independent polymer chains, it only can be replaced the Si atomic in Si-O-Si polymer chains (Si-O-Al), instead.

2011 ◽  
Vol 291-294 ◽  
pp. 1447-1449
Author(s):  
Chen Jing Lv ◽  
Shu Xia Ren ◽  
Xiu Shu Tian

The influence of Silica fume/Nanosilica on the Performance of phosphoaluminate cement was studied in the paper. The microstructure and morphology was determined by X-ray diffraction and scanning electron microscopy. The experimental results show that the phosphoaluminate cement with 4% of added Silica fume/Nanosilica(1:1) by weight of cement has an optimum splitting strength, in which the increase of splitting strength are about 15.1%,11.8% and 24.6% at 3days,7days and 28 days. The reason for causing the above results are the hydration rate and the amount of the hydrates of PALC with 4% Silica fume/Nanosilica have been increased significantly at different hydration time because of the role played by Silica fume and Nanosilica together.


2020 ◽  
Vol 9 (1) ◽  
pp. 396-409 ◽  
Author(s):  
Sara Ahmed ◽  
Tao Meng ◽  
Mazahir Taha

AbstractRecycling of red mud (RM) has attracted more attention in recent years due to severe environmental problems caused by landfilling. The effect of composition optimization and Nano-strengthening on the properties of a binder based on RM was studied in this paper. Results showed that modifying ratios of main oxides and adding Nano-SiO2 could obviously affect the mechanical properties and microstructure of the binder. Specimens with high SiO2/Al2O3 molar ratio (S/A) displayed considerable increase in compressive strength, while decreasing Na2O/Al2O3 molar ratio (N/A) improved the workability of the fresh mix. The compressive strength was developed significantly to be 45 MPa at 28 days by adding Nano-SiO2 with 0.4 wt.% of RM. Phase transformation and microstructure change at different stages of RM decomposition and binder geopolyerization were investigated by X-ray diffraction (XRD), Fourier transformation infrared (FTIR) and Scanning electron microscopy (SEM). The results of this study may provide a prospective method to use RM more widely in construction applications.


2021 ◽  
Vol 14 ◽  
Author(s):  
Xiaoyu Guo ◽  
Yajing Mao ◽  
Lizhai Pei ◽  
Chuangang Fan

Background: A large amount of phosphogypsum occupies the land and causes the environmental pollution. It is of great research significance and urgency to utilization of the phosphogypsum. Methods: The influence of the ratio of the cementing materials and phosphogypsum (C/P ratio) on the compressive strength, water absorption, softening coefficient and freeze-thaw stability of the phosphogypsum baking-free bricks was investigated. The consolidation process of the phosphogypsum baking-free bricks was analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results: XRD patterns show that the phosphogypsum baking-free bricks curved for 28 d are mainly composed of monoclinic CaSO4•2H2O and hexagonal Ca6Al2(SO4)3(OH)12•26H2O (Aft) phases. SEM observation shows that the phosphogypsum bricks consist of Aft nanorods and irregular microscale particles. The softening coefficient, water-resistant performance and freeze-thaw stability of the phosphogypsum baking-free bricks remarkably decrease with decreasing the C/P ratio. 28 d compressive strength decreases from 26.42 MPa to 15.58 MPa with the change of the C/P ratio from 1:1 to 1:2.5. The optimal ratio of the cementing materials and phosphogymsum is 1:1. The phosphogypsum baking-free bricks exhibit good stability after 18 freeze-thaw cycles. Conclusion: Phosphogypsum baking-free bricks were prepared by natural curing process using phosphogypsum as the raw materials, cement, slag, fly ash and silica fume as the cementing materials. The phosphogypsum baking-free bricks exhibit great application in the field of the building materials.


Inorganics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 54
Author(s):  
Giacomo Manfroni ◽  
Simona S. Capomolla ◽  
Alessandro Prescimone ◽  
Edwin C. Constable ◽  
Catherine E. Housecroft

The isomers 4′-(4-(trifluoromethyl)phenyl)-4,2′:6′,4″-terpyridine (1), 4′-(3-(trifluoromethyl)phenyl)-4,2′:6′,4″-terpyridine (2), 4′-(4-(trifluoromethyl)phenyl)-3,2′:6′,3″-terpyridine (3), and 4′-(3-(trifluoromethyl)phenyl)-3,2′:6′,3″-terpyridine (4) have been prepared and characterized. The single crystal structures of 1 and 2 were determined. The 1D-polymers [Cu2(hfacac)4(1)2]n.2nC6H4Cl2 (Hhfacac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione), [Cu(hfacac)2(2)]n.2nC6H5Me, [Cu2(hfacac)4(3)2]n.nC6H4Cl2, [Cu2(hfacac)4(3)2]n.nC6H5Cl, and [Cu(hfacac)2(4)]n.nC6H5Cl have been formed by reactions of 1, 2, 3 and 4 with [Cu(hfacac)2].H2O under conditions of crystal growth by layering and four of these coordination polymers have been formed on a preparative scale. [Cu2(hfacac)4(1)2]n.2nC6H4Cl2 and [Cu(hfacac)2(2)]n.2nC6H5Me are zig-zag chains and the different substitution position of the CF3 group in 1 and 2 does not affect this motif. Packing of the polymer chains is governed mainly by C–F...F–C contacts, and there are no inter-polymer π-stacking interactions. The conformation of the 3,2′:6′,3″-tpy unit in [Cu2(hfacac)4(3)2]n.nC6H4Cl2 and [Cu(hfacac)2(4)]n.nC6H5Cl differs, leading to different structural motifs in the 1D-polymer backbones. In [Cu(hfacac)2(4)]n.nC6H5Cl, the peripheral 3-CF3C6H4 unit is accommodated in a pocket between two {Cu(hfacac)2} units and engages in four C–Hphenyl...F–Chfacac contacts which lock the phenylpyridine unit in a near planar conformation. In [Cu2(hfacac)4(3)2]n.nC6H4Cl2 and [Cu(hfacac)2(4)]n.nC6H5Cl, π-stacking interactions between 4′-trifluoromethylphenyl-3,2′:6′,3″-tpy domains are key packing interactions, and this contrasts with the packing of polymers incorporating 1 and 2. We use powder X-ray diffraction to demonstrate that the assemblies of the coordination polymers are reproducible, and that a switch from a 4,2′:6′,4″- to 3,2′:6′,3″-tpy metal-binding unit is accompanied by a change from dominant C–F...F–C and C–F...H–C contacts to π-stacking of arene domains between ligands 3 or 4.


2012 ◽  
Vol 476-478 ◽  
pp. 1585-1588
Author(s):  
Hong Pan ◽  
Guo Zhong Li

The comprehensively modified effect of cement, VAE emulsion and self-made acrylic varnish on mechanical and water-resistant properties of gypsum sample was investigated and microstructure of gypsum sample was analyzed. Experimental results exhibit that absolutely dry flexural strength, absolutely dry compressive strength, water absorption and softening coefficient of gypsum specimen with admixture of 10% ordinary Portland cement and 6% VAE emulsion and acrylic varnish coated on its surface can respectively reach to 5.11MPa , 10.49 MPa, 8.32% and 0.63, respectively.


2011 ◽  
Vol 306-307 ◽  
pp. 961-965
Author(s):  
Chao Nan Yin ◽  
Ling Chao Lu ◽  
Shou De Wang

The influence of P2O5on the properties of alite-calcium strontium sulphoaluminate cement was researched by means of X-ray diffraction, scanning electron microscope-energy dispersive spectroscopy (SEM-EDS) and petrographic analysis. The results show that the optimal content of P2O5is 0.3% and the compressive strength of the cement at 1, 3, 28d are 27.0, 59.1, 110.9MPa when the calcining temperature is 1350°C. P2O5mainly exists in the belite and a suitable amount of P2O5can promote the formation of C1.5Sr2.5A3and alite. When the content of P2O5is higher than 0.3%, the formation of C1.5Sr2.5A3and alite can be hindered. P2O5can enhance the hydration heat evolution rate in the acceleration period and the hydrate heat of cement containing P2O5increases slightly.


2003 ◽  
Vol 785 ◽  
Author(s):  
George J. Kavarnos ◽  
Thomas Ramotowski

ABSTRACTChlorinated poly(vinylidene fluoride/trifluoroethylene) terpolymers are remarkable examples of high strain electrostrictive materials. These polymers are synthesized by copolymerizing vinylidene fluoride and trifluoroethylene with small levels of a third chlorinated monomer. The electromechanical responses of these materials are believed to originate from the chlorine atom, which, by its presence in the polymer chains and by virtue of its large van der Waals radius, destroys the long-range crystalline polar macro-domains and transforms the polymer from a normal to a high-strain relaxor ferroelectric. To exploit the strain properties of the terpolymer, it is desirable to understand the structural implications resulting from the presence of the chlorinated monomer. To this end, computations have been performed on model superlattices of terpolymers using quantum-mechanical based force fields. The focus has been on determining the energetics and kinetics of crystallization of the various polymorphs that have been identified by x-ray diffraction and fourier transform infrared spectroscopy. The chlorinated monomer is shown to act as a defect that can be incorporated into the lamellar structures of annealed terpolymer without a high cost in energy. The degree of incorporation of the chlorinated monomer into the crystal lattice is controlled by annealing conditions and ultimately determines the ferroelectric behavior of the terpolymers.


2004 ◽  
Vol 848 ◽  
Author(s):  
Evan Lyle Thomas ◽  
Erin E. Erickson ◽  
Monica Moldovan ◽  
David P. Young ◽  
Julia Y. Chan

AbstractA new member of the LnMIn5 family, ErCoIn5, has been synthesized by a flux-growth method. The structure of ErCoIn5 was determined by single crystal X-ray diffraction. It crystallizes in the tetragonal space group P4/mmm, Z = 1, with lattice parameters a = 4.5400(4) and c = 7.3970(7) Å, and V = 152.46(2) Å3. Electrical resistivity data show metallic behavior. Magnetic susceptibility measurements show this compound to be antiferromagnetic with TN = 5.1 K. We compare these experimental results with those of LaCoIn5 in an effort to better understand the effect of the structural trends observed on the transport and magnetic properties.


Author(s):  
Muhammad Armaghan Siffat ◽  
Muhammad Ishfaq ◽  
Afaq Ahmad ◽  
Khalil Ur Rehman ◽  
Fawad Ahmad

This study is supervised to assess the characteristics of the locally available wheat straw ash (WSA) to consume as a substitute to the cement and support in enhancing the mechanical properties of concrete. Initially, after incineration at optimum temperature of 800°C for 0.5, the ash of wheat straw was made up to the desirable level of fineness by passing through it to the several grinding cycles. Subsequently, the X-ray fluorescence (XRF) along with X-ray diffraction (XRD) testing conducted on ash of wheat straw for the evaluation its pozzolanic potential. Finally, the specimens of concrete were made by consuming 10% and 20% percentages of wheat straw ash as a replacement in concrete to conclude its impact on the compressive strength of high strength concrete. The cylinders of steel of dimensions 10cm diameter x 20cm depth were acquired to evaluate the compressive strength of high strength concrete. The relative outcomes of cylinders made of wheat straw ash substitution presented the slight increase in strength values of the concrete. Ultimately, the C-100 blends and WSA aided cement blends were inspected for the rheology of WSA through FTIR spectroscopy along with Thermogravimetric technique. The conclusions authenticate the WSA potential to replace cement in the manufacturing of the high strength concrete.


2020 ◽  
Author(s):  
Sahar. Mokhtari ◽  
Anthony.W. Wren

AbstractThis study addresses issues with currently used bone adhesives, by producing novel glass based skeletal adhesives through modification of the base glass composition to include copper (Cu) and by characterizing each glass with respect to structural changes. Bioactive glasses have found applications in fields such as orthopedics and dentistry, where they have been utilized for the restoration of bone and teeth. The present work outlines the formation of flexible organic-inorganic polyacrylic acid (PAA) – glass hybrids, commercial forms are known as glass ionomer cements (GICs). Initial stages of this research will involve characterization of the Cu-glasses, significant to evaluate the properties of the resulting adhesives. Scanning electron microscopy (SEM) of annealed Cu glasses indicates the presence of partial crystallization in the glass. The structural analysis of the glass using Raman suggests the formation of CuO nanocrystals on the surface. X-ray diffraction (XRD) pattern and X-ray photoelectron spectroscopy (XPS) further confirmed the formation of crystalline CuO phases on the surface of the annealed Cu-glass. The setting reaction was studied using Fourier transform infrared spectroscopy (ATR-FTIR). The mechanical properties of the Cu containing adhesives exhibited gel viscoelastic behavior and enhanced mechanical properties when compared to the control composition. Compression data indicated the Cu glass adhesives were efficient at energy dissipation due to the reversible interactions between CuO nano particles and PAA polymer chains.


Sign in / Sign up

Export Citation Format

Share Document