Influence of Emulsifiers on Physical Properties of Oil/Water Emulsions Containing Ostrich Oil

2018 ◽  
Vol 777 ◽  
pp. 592-596
Author(s):  
Juthaporn Ponphaiboon ◽  
Sontaya Limmatvapirat ◽  
Chutima Limmatvapirat

The fabrication of oil/water (O/W) emulsions in order to prepare the spray-dried encapsulated bioactive ostrich oil emulsions can be useful for increasing stability of commercial products. In this study, O/W emulsions were stabilized with mixed emulsifiers (Span and Tween) or soy lecithin. The effects of emulsifiers on the physical properties of emulsions containing ostrich oil were investigated. Results showed that the addition of a mixture of Span and Tween emulsifiers at concentrations between 5 and 15% w/w reduced the droplet size of the emulsions but did not decrease the zeta potential in the emulsion system. The smallest droplet size of 5.01±0.43 μm was obtained from the emulsion containing 15% w/w mixture of Span 20 and Tween 80. The zeta potential values of all emulsions containing a mixture of Span and Tween emulsifiers in the concentration range of 5 to 20% w/w were between-23 and-55 mV. In addition, the viscosity of these emulsions increased with increases in the concentrations of both emulsifiers. The stable 20% w/w ostrich oil emulsion stabilized with 15% w/w Span 20/Tween 80 presented viscosity equal to 69.56±1.82 cP. For 10% w/w ostrich oil emulsions stabilized with lecithin, the droplet size and zeta potential of the emulsions tended to decrease with increasing lecithin concentrations. An emulsion containing 10% w/w lecithin exhibited the smallest droplet size (3.93±0.11 μm). The zeta potential values of all emulsions composed of 1-15% w/w lecithin were between-33 and –66 mV and the viscosity of these emulsions increased with increases in the concentrations of lecithin. The stable 10% w/w ostrich oil emulsion stabilized with 10% w/w lecithin exhibited a high viscosity of 172.50±1.01cP. In summary, 10% w/w lecithin provides better emulsion stability than 15% w/w Span 20/Tween 80. These results therefore reveal important parameters for the fabrication of stable O/W emulsions containing ostrich oil.

Foods ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1657
Author(s):  
Karolina Östbring ◽  
María Matos ◽  
Ali Marefati ◽  
Cecilia Ahlström ◽  
Gemma Gutiérrez

Rapeseed press cake (RPC), the by-product of rapeseed oil production, contains proteins with emulsifying properties, which can be used in food applications. Proteins from industrially produced RPC were extracted at pH 10.5 and precipitated at pH 3 (RPP3) and 6.5 (RPP6.5). Emulsions were formulated at three different pHs (pH 3, 4.5, and 6) with soy lecithin as control, and were stored for six months at either 4 °C or 30 °C. Zeta potential and droplet size distribution were analyzed prior to incubation, and emulsion stability was assessed over time by a Turbiscan instrument. Soy lecithin had significantly larger zeta potential (−49 mV to 66 mV) than rapeseed protein (−19 mV to 20 mV). Rapeseed protein stabilized emulsions with smaller droplets at pH close to neutral, whereas soy lecithin was more efficient at lower pHs. Emulsions stabilized by rapeseed protein had higher stability during storage compared to emulsions prepared by soy lecithin. Precipitation pH during the protein extraction process had a strong impact on the emulsion stability. RPP3 stabilized emulsions with higher stability in pHs close to neutral, whereas the opposite was found for RPP6.5, which stabilized more stable emulsions in acidic conditions. Rapeseed proteins recovered from cold-pressed RPC could be a suitable natural emulsifier and precipitation pH can be used to monitor the stability in emulsions with different pHs.


Author(s):  
Himanshu Paliwal ◽  
Ram Singh Solanki ◽  
Chetan Singh Chauhan

The purpose of conducting this study was to prepare an oral microemulsion formulation of Rosuvastatin calcium (RC) to improve its water solubility. Oil in water microemulsion was formulated using Oleic acid, Tween 80 and Polyethylene Glycol-400(PEG-400) as oil, surfactant and co-surfactant, respectively. The ideal proportion of surfactant: co-surfactant (Smix) was chosen by constructing pseudoternary diagrams. The microemulsion formulations which proved to be stable after thermodynamic stability testing were further evaluated for physical characteristics. Selected formulations were evaluated for droplet size, zeta potential, polydispersity index, viscosity and % drug content. The results were suggestive that optimized microemulsion formulation (F2) was thermodynamically stable and clear having a droplet size of 74.29 nm and zeta potential of -18.44.  In vitro dissolution study for optimized microemulsion was performed using a dialysis bag method and cumulative % drug release was determined. The result from the release study was indicative of improved solubility of Rosuvastatin calcium which may serve to boost up the oral bioavailability of drug.


2011 ◽  
Vol 189-193 ◽  
pp. 3153-3157
Author(s):  
Yan Zhen Zhang ◽  
Yong Hong Liu ◽  
Ren Jie Ji ◽  
Bao Ping Cai

In this paper, the EDM performance of water-in-oil (W/O) emulsions dielectric with different surfactant concentration is investigated by correlated to its physical properties, such as viscosity and droplets size, which is predominantly determined by the surfactant concentration. Experimental results show that the stability of the W/O emulsions increases with increasing surfactant concentration, whereas the EDM performance deteriorates with increasing surfactant concentration. So, taking a comprehensively consideration of the emulsion stability and EDM performance, the concentration of surfactant must be appropriately selected.


2020 ◽  
Vol 10 (4) ◽  
pp. 69-84
Author(s):  
Dr. Mueyyed Akram Arslan ◽  
Dr. Ghassan Burhan Yaqoob

In this study oil-soluble (RP6000 and MAKS-9150) emulsion breakers have been selected for separation of water from Kirkuk / baba (50oC), Khbbaz (40oC) crude oil emulsions and their activity measured using the Bottle test method at different concentration and found the activity of RP6000 demulsified best than MAKS-9150 emulsion breakers. RP6000 separated water (100%) in (15)min., (40)ppm and in (60)min., (20)ppm of demulsified for Kirkuk/ baba Crude oil and for khbbaz Crude oil the (100%) water separation was in (15)min., (80)ppm and in (30)min., (60)ppm and PH effect, salinity, temperature and density of emulsion stability depending on literature were explained for Optimization.


2018 ◽  
Vol 2 (4) ◽  
pp. 64 ◽  
Author(s):  
Daria S. Kolotova ◽  
Yuliya A. Kuchina ◽  
Lyudmila A. Petrova ◽  
Nicolay G. Voron’ko ◽  
Svetlana R. Derkach

The effect of aqueous phase content and temperature North Sea crude oil emulsion viscoelastic behavior has been studied. Heavy crude oil from the North Sea is of high viscosity and is capable of forming stable water-in-crude oil (w/o) emulsions without introducing any synthetic surfactants. The aqueous phase volume content was varied from 1 to 40%, and the temperature was varied from 0 to 30 °C. The w/o emulsion viscosity increased sharply when the aqueous phase content exceeds 20%, being more pronounced at the lower temperatures. The viscosity flow curves for emulsions containing more than 20% aqueous phase demonstrate non-Newtonian behavior, in contrast to crude oil, which is Newtonian. The coefficients in the master curve describing the viscosity-temperature dependence were determined. Oscillatory rheological tests showed that the loss modulus substantially exceeds the storage modulus which indicates the liquid-like state of the emulsions.


REAKTOR ◽  
2017 ◽  
Vol 6 (1) ◽  
pp. 29
Author(s):  
B. Pramudono ◽  
H. B. Mat

The stability of water-in-oil emulsion of some Malaysian crude oils was studied with particular emphasis on effect of interfacial active components existed in the crude oil, i.e. asphaltene, resin and wax. The emulsion stability was studied by measuring the volume of water or oil phase separated in variation with time, water hold up, and the heights of the sedimenting/coalescing interfaces during the separation at various temperatures. The study investigated the influence of asphaltene, resin and wax on emultion stability if it`s present in the crude oil alone, together or combination one of the others. The result show that the interfacial active component that stabilize emulsion is asphaltene. The resin and wax  do not form stale emulsion either aloneor together. There is a correlation between emulsion stability and physicochemical properties of crude oil which showed that higher asphaltene content in the crude oil would form more stable emultion. Increased temperature was found to cause instability of emultion. Keywords : emultion stability, crude oil, asphaltene, resin and wax


2015 ◽  
Vol 29 (6) ◽  
pp. 3616-3625 ◽  
Author(s):  
Daniel P. Cherney ◽  
Chunping Wu ◽  
Rachel M. Thorman ◽  
Jessica L. Hegner ◽  
Mohsen S. Yeganeh ◽  
...  

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 174
Author(s):  
Maria-Cristina Anicescu ◽  
Cristina-Elena Dinu-Pîrvu ◽  
Marina-Theodora Talianu ◽  
Mihaela Violeta Ghica ◽  
Valentina Anuța ◽  
...  

The present study brings to attention a method to develop salicylic acid-based oil in water (O/W) microemulsions using a tensioactive system based on Tween 80, lecithin, and propylene glycol (PG), enriched with a vegetable oat oil phase and hyaluronic acid. The systems were physically characterized and the Quality by design approach was applied to optimize the attributes of microemulsions using Box–Behnken modeling, combined with response surface methodology. For this purpose, a 33 fractional factorial design was selected. The effect of independent variables namely X1: Tween 80/PG (%), X2: Lecithin (%), X3: Oil phase (%) was analyzed considering their impact upon the internal structure and evaluated parameters chosen as dependent factors: viscosity, mean droplet size, and work of adhesion. A high viscosity, a low droplet size, an adequate wettability—with a reduced mechanical work—and clarity were considered as desirable for the optimal systems. It was found that the optimal microemulsion which complied with the established conditions was based on: Tween 80/PG 40%, lecithin 0.3%, oat oil 2%, salicylic acid 0.5%, hyaluronic acid 1%, and water 56.2%. The response surface methodology was considered an appropriate tool to explain the impact of formulation factors on the physical properties of microemulsions, offering a complex pattern in the assessment of stability and quality attributes for the optimized formulation.


2019 ◽  
Vol 25 (11) ◽  
pp. 37-46
Author(s):  
Zenah Hani Maddah ◽  
Tariq Mohammed Naife

Formation of emulsions during oil production is a costly problem, and decreased water content in emulsions leads to increases productivity and reduces the potential for pipeline corrosion and equipment used. The chemical demulsification process of crude oil emulsions is one of the methods used for reducing water content. The demulsifier presence causes the film layer between water droplets and the crude oil emulsion that to become unstable, leading to the accelerated of water coalescence. This research was performed to study the performance of a chemical demulsifier Chimec2439 (commercial) a blend of non-ionic oil-soluble surfactants. The crude oils used in these experiments were Basrah and Kirkuk Iraqi crude oil. These experimental work were done using different water to oil ratio. The study investigated the factors that have a role in demulsification processes such as the concentration of demulsifier, water content, salinity, pH, and asphaltene content. The results showed in measuring the droplet size distribution, in Basrah crude oil, that the average water droplet size was between (5.5–7.5) μm in the water content 25% while was between (3.3-4) μm in the water content 7%. The average water droplet size depends on the water content, and droplet size reduced when the water content of emulsion was less than 25%. In Kirkuk crude oil, in water content of 7%, it was between (4.5-6) μm, while in 20%, it was between (4-8) μm, and in 25% it was between (5-8.8) μm. It was found that the rate of separation increases with increasing concentration of demulsifier. For Basrah crude oil at 400ppm the separation was 83%, and for Kirkuk, crude oil was 88%. The separation of water efficiency was increased with increased water content and salt content. In Basrah crude oil, the separation rate was 84% at a dose of salt of 3% (30000) ppm and at zero% of salt, the separation was70.7%. In Kirkuk crude oil, the separation rate was equal 86.2% at a dose of salt equal 3% (30000) ppm, and at zero% of salt, the separation 80%.  


Sign in / Sign up

Export Citation Format

Share Document