Development of a Self-Adhesive Cellulosic Hydrogel Wound Dressing

2019 ◽  
Vol 801 ◽  
pp. 15-20
Author(s):  
Terence Tumolva ◽  
Sweet Hazel Aquino ◽  
Kryzsa Mae Cabeguin ◽  
John Frederick Imperial

In this study, a self-adhesive hydrogel wound dressing was developed by combining hydroxyethyl cellulose (HEC) hydrogel with a tannic acid-polyethylene glycol (TAPE) adhesive bioadhesive with gelatin. Test samples of the cellulosic wound dressing were prepared with three (3) different mixing ratios of the crosslinking solution, three (3) different adhesive formulation, and two different hydrogel/adhesive contact area (flat, ridged). Adhesion performances of these samples on porcine skin were evaluated by performing a T-peel test. Analysis of the HEC/TAPE-gelatin interface showed that the HEC cross-linking agent formulation, adhesive thickness, and presence of surface ridges showed significant three-way interaction effects, and these parameters were modeled using orthogonal polynomials and optimized via response surface methodology (RSM). The adhesion on the HEC-TAPE-gelatin interface was also investigated further using scanning electron microscopy (SEM), where it had been observed that greater adhesion occurred with a decrease in cross-linking density, thinner adhesive layer, and the presence of ridges. Lastly, disk diffusion testing indicated greater antimicrobial activity (mean inhibition zone = 12 mm) against S. aureus and P. aeruginosa in contrast to commercial hydrogel dressings (mean inhibition zone = 7.5 mm), while MTT assay on human lymphocytes resulted to a 98% cell survival rate. Based on these results, it was concluded that it is feasible to use HEC hydrogel with TAPE-gelatin adhesive for manufacturing self-adhesive wound dressing products.

2019 ◽  
Vol 821 ◽  
pp. 10-16
Author(s):  
Javier Kristina Mutya ◽  
Nadura Riscia ◽  
Jim Clarence Rengel ◽  
Terence Tumolva

A novel self-adhesive wound dressing product was developed using a hydroxyethyl cellulose (HEC) hydrogel layered with a TAPE-gelatin bioadhesive. This wound dressing was then evaluated for its sorption properties through diffusion and swelling tests, and the parameters analyzed were hydrogel formulation, wound dressing thickness and adhesive layer thickness. Results showed that the wound dressing produced using 6% NaOH/5% thiourea in the crosslinking solution, with 2.5 mm hydrogel thickness, and 0.2 mm TAPE-gelatin thickness had the highest water absorbed. Lastly, analysis on swelling kinetics based on a previous study was conducted to determine the diffusion coefficients for the composite wound dressing.


2021 ◽  
Vol 19 ◽  
pp. 228080002198969
Author(s):  
Min-Xia Zhang ◽  
Wan-Yi Zhao ◽  
Qing-Qing Fang ◽  
Xiao-Feng Wang ◽  
Chun-Ye Chen ◽  
...  

The present study was designed to fabricate a new chitosan-collagen sponge (CCS) for potential wound dressing applications. CCS was fabricated by a 3.0% chitosan mixture with a 1.0% type I collagen (7:3(w/w)) through freeze-drying. Then the dressing was prepared to evaluate its properties through a series of tests. The new-made dressing demonstrated its safety toward NIH3T3 cells. Furthermore, the CCS showed the significant surround inhibition zone than empty controls inoculated by E. coli and S. aureus. Moreover, the moisture rates of CCS were increased more rapidly than the collagen and blank sponge groups. The results revealed that the CCS had the characteristics of nontoxicity, biocompatibility, good antibacterial activity, and water retention. We used a full-thickness excisional wound healing model to evaluate the in vivo efficacy of the new dressing. The results showed remarkable healing at 14th day post-operation compared with injuries treated with collagen only as a negative control in addition to chitosan only. Our results suggest that the chitosan-collagen wound dressing were identified as a new promising candidate for further wound application.


Soft Matter ◽  
2018 ◽  
Vol 14 (47) ◽  
pp. 9681-9692 ◽  
Author(s):  
Chung-Yuen Hui ◽  
Zezhou Liu ◽  
Helen Minsky ◽  
Costantino Creton ◽  
Matteo Ciccotti

The common pressure sensitive adhesive (PSA) tape is a composite consisting of a stiff backing layer and a soft adhesive layer.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 784
Author(s):  
Longlong Zhang ◽  
Yuanzhi Wu ◽  
Tian Zeng ◽  
Yu Wei ◽  
Guorui Zhang ◽  
...  

The purpose of this study was to improve the cellular compatibility and corrosion resistance of AZ31 magnesium alloy and to prepare a biodegradable medical material. An aminated hydroxyethyl cellulose (AHEC) coating was successfully prepared on the surface of a micro-arc oxide +AZ31 magnesium alloy by sol–gel spinning. The pores of the micro-arc oxide coating were sealed. A polarization potential test analysis showed that compared to the single micro-arc oxidation coating, the coating after sealing with AHEC significantly improved the corrosion resistance of the AZ31 magnesium alloy and reduced its degradation rate in simulated body fluid (SBF). The CCK-8 method and cell morphology experiments showed that the AHEC + MAO coating prepared on the AZ31 magnesium alloy had good cytocompatibility and bioactivity.


e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Ying Wu ◽  
Qing Yang ◽  
Yali Gi ◽  
Yueting Zhang

AbstractA novel hydrogel wound dressing with semi-interpenetrating polymer network structure (semi-IPN) was prepared by radical polymerization of acrylic acid with potassium persulfate (K2S2O8) as initiator and N, N'-methylenebisacrylamide (MBA) as cross-linking agent in the presence of chitosan (CTS) and polyvinyl pyrrolidone (PVP). Hydrogels were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). SEM displayed semi- IPN hydrogels' creased surface with some scale-like wrinkles, thus improving the absorptive capability which has been considered as a most important characteristic of wound dressings. It was found that the content of cross-linking agent and the mass ratio of PVP and CTS had much influence on the mechanical properties of the hydrogel, varying from brittle plastics to elastomer due to the different degrees of cross linking. Since tensile strength is partly in inverse ratio to the hydrogel absorbent capability, the article offers an analysis of varying material proportion in order to obtain an optimum properties of the hydrogel wound dressing .


2019 ◽  
Vol 5 (8) ◽  
pp. 4048-4053 ◽  
Author(s):  
Yujie Hua ◽  
Yibo Gan ◽  
Pei Li ◽  
Lei Song ◽  
Chunmeng Shi ◽  
...  
Keyword(s):  

Holzforschung ◽  
2006 ◽  
Vol 60 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Francisco López-Suevos ◽  
Charles E. Frazier

Abstract Parallel-plate rheological analysis was conducted on two types of cross-linking poly(vinyl acetate) latex films: dry freestanding films, and dry films bonded directly to wood (composites). For each sample type, three levels of cross-linking were used: (1) little or no cross-linking of unaltered latex; (2) substantial cross-linking through AlCl3 catalysis of N-methylolacrylamide co-monomer; and (3) greater cross-linking from a phenol-formaldehyde resol additive, in addition to AlCl3 catalysis. Simple thermal scans revealed a strong wood/adhesive interaction; wood increased the base polymer T g by ∼5°C in all adhesives. Relative to the simple thermal scans, time-temperature master curves provided more insight and information about the wood/adhesive interaction. Storage modulus and tan δ master curves both indicated that wood retarded adhesive cross-linking. Using time-temperature superposition, a segmental coupling analysis demonstrated that wood actually narrowed the breadth of the glass transition, or reduced segmental coupling. Cross-linking influenced segmental coupling, but in a fashion that was dependent on the presence or absence of wood. Wood-induced reductions in cross-linking and in segmental coupling were attributed to the diffusion of water-soluble reactive compounds away from the adhesive layer and into the bulk wood. Time/temperature equivalence provides a sensitive means to detect interactions between wood and viscoelastic adhesives.


Marine Drugs ◽  
2021 ◽  
Vol 19 (9) ◽  
pp. 479
Author(s):  
Jingjing Zhang ◽  
Wenqiang Tan ◽  
Qing Li ◽  
Xiaorui Liu ◽  
Zhanyong Guo

Hydrogels, possessing high biocompatibility and adaptability to biological tissue, show great usability in medical applications. In this research, a series of novel cross-linked chitosan quaternary ammonium salt loading with gentamicin sulfate (CTMCSG) hydrogel films with different cross-linking degrees were successfully obtained by the reaction of chitosan quaternary ammonium salt (TMCS) and epichlorohydrin. Fourier transform infrared spectroscopy (FTIR), thermal analysis, and scanning electron microscope (SEM) were used to characterize the chemical structure and surface morphology of CTMCSG hydrogel films. The physicochemical property, gentamicin sulphate release behavior, cytotoxicity, and antibacterial activity of the CTMCSG against Escherichia coli and Staphylococcus aureus were determined. Experimental results demonstrated that CTMCSG hydrogel films exhibited good water stability, thermal stability, drug release capacity, as well as antibacterial property. The inhibition zone of CTMCSG hydrogel films against Escherichia coli and Staphylococcus aureus could be up to about 30 mm. Specifically, the increases in maximum decomposition temperature, mechanical property, water content, swelling degree, and a reduction in water vapor permeability of the hydrogel films were observed as the amount of the cross-linking agent increased. The results indicated that the CTMCSG-4 hydrogel film with an interesting physicochemical property, admirable antibacterial activity, and slight cytotoxicity showed the potential value as excellent antibacterial wound dressing.


2021 ◽  
Author(s):  
Yi Guo ◽  
Chuanyin Zhao ◽  
Chao Yan ◽  
Li Cui

Abstract In this study, novel cellulose/carboxymethyl chitosan (CMCS) composite hydrogels were constructed by blending cellulose and CMCS in LiOH/urea aqueous solutions, and then cross-linking with epichlorohydrin. The structure and morphology of the composite hydrogels were characterized by Fourier transform infrared spectroscopy (FT-IR), wide-angle X-ray diffraction (WXRD), thermo-gravimetric analysis (TGA), and scanning electron microscopy (SEM). The results revealed that the chemical cross-linking reaction between cellulose and CMCS occurred in the hydrogel, and CMCS contributed to the enhancement of pore size, whereas cellulose as a strong backbone in the hydrogel to support the pore wall. The mechanical strength of the composite hydrogels increased with the cellulose content, while the equilibrium swelling ratio and antibacterial activity increased with the CMCS content. The composite hydrogels had no cytotoxicity towards L929 cells, suggesting good biocompatibility. All these results indicate that cellulose/CMCS composite hydrogels can be effectively used as a material in wound dressing.


Sign in / Sign up

Export Citation Format

Share Document