Structural Repointing of Masonry Structures

2019 ◽  
Vol 817 ◽  
pp. 412-420
Author(s):  
Jaime Gonzalez-Libreros ◽  
Tommaso D'Antino ◽  
Francesco Focacci ◽  
Christian Carloni ◽  
Carlo Pellegrino

Existing masonry structures are often in need of strengthening due to the limited masonry tensile strength and consequent occurrence of cracks, which can lead to collapse of the structure. To control the cracking phenomena and increase the load associated with a certain collapse mechanism, structural repointing by means of reinforcing bars inserted in the mortar bed joints can be employed. Fiber reinforced polymer (FRP) bars have been used for repointing due to their high tensile strength and good resistance to corrosion. Although structural repointing is a well-known and diffused strengthening technique, limited research is available in the literature and reliable analytical models to compute the structural capacity of repointed members are missing. In this paper, experimental results of masonry members strengthened with structural repointing found in the literature are analyzed and discussed to provide indications on the contribution of repointing in the masonry strength and identify mechanical models able to predict the failure load of repointed masonry members.

2019 ◽  
Vol 25 (8) ◽  
pp. 773-784 ◽  
Author(s):  
Yasmin Murad ◽  
Ahmed Ashteyat ◽  
Rozan Hunaifat

Gene expression programming (GEP) is used in this research to develop an empirical model that predicts the bond strength between the concrete surface and carbon fiber reinforced polymer (CFRP) sheets under direct pull out. Therefore, a large and reliable database containing 770 test specimens is collected from the literature. The gene expression programming model is developed using eight parameters that predominantly control the bond strength. These parameters are concrete compressive strength, maximum aggregate size, fiber reinforced polymer (FRP) tensile strength, FRP thickness, FRP modulus of elasticity, adhesive tensile strength, FRP length, and FRP width. The model is validated using the experimental results and a statistical assessment is implemented to evaluate the performance of the proposed GEP model. Furthermore, the predicted bond results, obtained using the GEP model, are compared to the results obtained from several analytical models available in the literature and a parametric study is conducted to further ensure the consistency of the model by checking the trends between the input parameters and the predicted bond strength. The proposed model can reasonably predict the bond strength that is most fitting to the experimental database compared to the analytical models and the trends of the GEP model are in agreement with the overall trends of the analytical models and experimental tests.


2014 ◽  
Vol 1021 ◽  
pp. 63-67 ◽  
Author(s):  
Zhen Lei ◽  
Jun Tong Qu ◽  
Yong Wang

FRP strengthening technique provides a promising alternative for masonry structures. This paper presents research results of quasi-static tests investigating the in-plane mechanical behavior of RC-brick masonry walls with opening strengthened with basalt fiber reinforced polymer (BFRP). Two half scale RC-brick walls were constructed, one without any strengthening scheme served as the reference specimen, another one was directly strengthened with BFRP in mixed strengthening configuration. All specimens were tested under low frequency cyclic loading. BFRP can effectively improve the lateral strength of the wall by a factor of 0.16, and the improvement in the lateral deformation capacity was much significant. The seismic performance of the composite wall strengthened with BFRP can exceed the unreinforced reference, which verifies the effectiveness of BFRP strengthening technique to strengthening RC-brick composite masonry structures in seismically endangered regions.


2022 ◽  
pp. 136943322110651
Author(s):  
Ruiming Cao ◽  
Bai Zhang ◽  
Luming Wang ◽  
Jianming Ding ◽  
Xianhua Chen

Alkali-activated materials (AAMs) are considered an eco-friendly alternative to ordinary Portland cement (OPC) for mitigating greenhouse-gas emissions and enabling efficient waste recycling. In this paper, an innovative seawater sea-sand concrete (SWSSC), that is, seawater sea-sand alkali-activated concrete (SWSSAAC), was developed using AAMs instead of OPC to explore the application of marine resources and to improve the durability of conventional SWSSC structures. Then, three types of fiber-reinforced polymer (FRP) bars, that is, basalt-FRP, glass-FRP, and carbon-FRP bars, were selected to investigate their bond behavior with SWSSAAC at different alkaline dosages (3%, 4%, and 6% Na2O contents). The experimental results manifested that the utilization of the alkali-activated binders can increase the splitting tensile strength ( ft) of the concrete due to the denser microstructures of AAMs than OPC pastes. This improved characteristic was helpful in enhancing the bond performance of FRP bars, especially the slope of bond-slip curves in the ascending section (i.e., bond stiffness). Approximately three times enhancement in terms of the initial bond rigidity was achieved with SWSSAAC compared to SWSSC at the same concrete strength. Furthermore, compared with the BFRP and GFRP bars, the specimens reinforced with the CFRP bars experienced higher bond strength and bond rigidity due to their relatively high tensile strength and elastic modulus. Additionally, significant improvements in initial bond stiffness and bond strength were also observed as the alkaline contents (i.e., concrete strength) of the SWSSAAC were aggrandized, demonstrating the integration of the FRP bars and SWSSAAC is achievable, which contributes to an innovative channel for the development of SWSSC pavements or structures.


2016 ◽  
Vol 78 (5-2) ◽  
Author(s):  
Meng Jing ◽  
Werasak Raongjant

The objective of this research work is to determine the effect of wet-dry cycling on bond behavior of historic masonry structures strengthened by Glass Fiber Reinforced Polymer (GFRP). Shear bond testing was carried out through total 36 specimens exposed to dry, full moisture or wet-dry cycling conditions.  The selected samples were then tested at 0, 30, 60 and 90 days. Post-ageing test was also preceded on total sixty masonry prisms exposed to dry, full moisture or wet-dry cycling conditions. The compressive strengths of selected samples were then tested at 0, 40, 70 and 100 days. The test results showed an obvious decrease of the bond strength between GFRP sheets and bricks in the wet-dry cycling condition. For masonry prisms with or without GFRP strengthening, in the first 40 days, the compressive strength of GFRP bonded prism decreased quickly to the value near that of prism without GFRP. After 40 days the rate of decrease became slow, which means that, sheets retrofitted outside the masonry prisms helped to improve their durability by reducing water permeation. 


2016 ◽  
Vol 78 (5-3) ◽  
Author(s):  
Norliyati Mohd Amin ◽  
Nur Aqilah Aziz ◽  
Ilya Joohari ◽  
Anizahyati Alisibramulisi

Cracks in concrete structure have always been a big threat on the strength of the concrete. Crack is one of the common deterioration observed in reinforced concrete beams and slabs. Concrete cracking is a random process, highly variable and influenced by many factors. To restore the structural capacity of the concrete damages, retrofitting and strengthening are required. There are several techniques that are used for retrofitting and strengthening reported in the literature [1], [2], [3]. This paper investigates the strength performance of retrofitting and strengthening methods of reinforced concrete one-way slab. Flexural bending test are performed on three different concrete slab of size 1000 mm x 500 mm x 75 mm. The methods that are used for retrofit are epoxy injection and patching and for the strengthening is lamination of carbon fiber reinforced polymer. The slabs were loaded to a certain stage where the cracks were formed for retrofitting and strengthening procedure. The achieved failure mode and load capacity of the concrete slab were observed. The repaired techniques for restoring and improving the structural capacity of cracked concrete slabs were analyzed. The ultimate load achieved for the epoxy injection laminate was 19.60 kN followed by CFRP laminate and patching that were 17.64 kN and 17.03 kN respectively. While the deflection value for the three specimens were 14.42 mm, 4.49 mm and 7.036 mm.  


2019 ◽  
Vol 14 ◽  
pp. 155892501985001 ◽  
Author(s):  
Chenggao Li ◽  
Guijun Xian

The elevated temperature resistance and even fire resistance of carbon fiber-reinforced polymer composites were critical concerns in many applications. These properties of a carbon fiber-reinforced polymer depend not only on the degradation of the polymer matrix but also on that of the carbon fibers under elevated temperatures. In this study, influences of elevated temperatures (by 700°C for 30 min) in air on the mechanical properties and microstructures of a carbon fiber were investigated experimentally. It was found that the tensile strength and modulus as well as the diameters of the carbon fibers were reduced remarkably when the treatment temperatures exceeded 500°C. At the same time, the content of the structurally ordered carbonaceous components on the surface of carbon fibers and the graphite microcrystal size were reduced, while the graphite interlayer spacing ( d002) was enhanced. The deteriorated tensile modulus was attributed to the reduced graphite microcrystal size and the reduced thickness of the skin layer of the carbon fiber, while the degraded tensile strength was mainly attributed to the weakened cross-linking between the graphite planes.


Sign in / Sign up

Export Citation Format

Share Document