scholarly journals Morphology and Structure of Electrodeposited Prussian Blue and Prussian White Thin Films

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1103 ◽  
Author(s):  
Bruna Baggio ◽  
Cristiano Vicente ◽  
Silvia Pelegrini ◽  
Cristiani Plá Cid ◽  
Iuri Brandt ◽  
...  

The compound Prussian Blue (PB), and its reduced form Prussian White (PW) are nowadays considered, in applied and fundamental research groups, as potential materials for sustainable energy storage devices. In this work, these compounds were prepared by potentiostatic electrochemical synthesis, by using different deposition voltages and thicknesses. Thick, compact and uniform layers were characterized by scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. Results have shown a well-defined transition voltage for growing Prussian Blue phases and a strong dependence of the morphology/growing orientation of the samples as a function of applied potential and thickness. For the negative potential tested of −0.10 V vs. SCE, a mixture of cubic and rhombohedral phases was observed.

2020 ◽  
Vol 851 ◽  
pp. 25-31
Author(s):  
Markus Diantoro ◽  
Ahmad Al Ittikhad ◽  
Thathit Suprayogi ◽  
Nasikhudin ◽  
Joko Utomo

The development of energy storage devices encourages the sustainability of research on basic materials of supercapacitor technology. SrTiO3 is one of metal oxide called as titanate alkali metal ATiO3 (A = Ba, Sr, Ca). This material shows an excellent dielectric constant, thus expected to be potential as raw material of supercapacitor. In this work, boron was used as a dopant on the SrTiO3 system to modify its local structure and enhance the electrical properties. Synthesis SrTi1-xBxO3 was carried out using a solid-state reaction method followed by the sintering process in various molar ratio. The microstructure of SrTi1-xBxO3 compound was identified by X-ray Diffraction with Cu-Kα. XRD pattern identified the presence of SrTi1-xBxO3 phase with a slight change in the lattice parameters. I-V measurement confirmed that the electrical conductivity increased gradually up to 16.04 Ω-1cm-1. For investigating their application for electrode materials, CV was employed and it presents that the specific capacitance and energy density of x = 0.08 were 5.488 Fg-1 and 0.110 Jg-1.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6008
Author(s):  
Tahira Yaqoob ◽  
Malika Rani ◽  
Arshad Mahmood ◽  
Rubia Shafique ◽  
Safia Khan ◽  
...  

MXene/Ag2CrO4 nanocomposite was synthesized effectively by means of superficial low-cost co-precipitation technique in order to inspect its capacitive storage potential for supercapacitors. MXene was etched from MAX powder and Ag2CrO4 spinel was synthesized by an easy sol-gel scheme. X-Ray diffraction (XRD) revealed an addition in inter-planar spacing from 4.7 Å to 6.2 Å while Ag2CrO4 nanoparticles diffused in form of clusters over MXene layers that had been explored by scanning electron microscopy (SEM). Energy dispersive X-Ray (EDX) demonstrated the elemental analysis. Raman spectroscopy opens the gap between bonding structure of as-synthesized nanocomposite. From photoluminence (PL) spectra the energy band gap value 3.86 eV was estimated. Electrode properties were characterized by applying electrochemical observations such as cyclic voltammetry along with electrochemical impedance spectroscopy (EIS) for understanding redox mechanism and electron transfer rate constant Kapp. Additionally, this novel work will be an assessment to analyze the capacitive behavior of electrode in different electrolytes such as in acidic of 0.1 M H2SO4 has specific capacitance Csp = 525 F/g at 10 mVs−1 and much low value in basic of 1 M KOH electrolyte. This paper reflects the novel synthesis and applications of MXene/Ag2CrO4 nanocomposite electrode fabrication in energy storage devices such as supercapacitors.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mutaz Salih ◽  
M. Khairy ◽  
Babiker Abdulkhair ◽  
M. G. Ghoniem ◽  
Nagwa Ibrahim ◽  
...  

Abstract In this paper, Sn-doped TiO2 nanomaterials with varying concentrations were manufactured through a simple procedure. The fabricated TiO2 and Sn loaded on TiO2 nanoparticles were studied using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-rays, Fourier transform infrared spectroscopy, and resistance analyses. The benefits of dielectric constant and ac conductivity rise at high Sn loaded concentration on TiO2 nanoparticles. The enhanced electrical conductivity is seen for STO3 (3.5% Sn doped TiO2) and STO4 (5% Sn doped TiO2) specimens are apparently associated with the introduced high defect TiO2 lattice. Furthermore, the fabricated specimens’ obtained findings may be applied as possible candidates for high-energy storage devices. Moreover, proper for the manufacture of materials working at a higher frequency.


NANO ◽  
2020 ◽  
Vol 15 (08) ◽  
pp. 2050102
Author(s):  
Xiaoqi Tan ◽  
Xiaolei Yue ◽  
Meng Yuan ◽  
Shuxia Liu ◽  
Yaodong Zhang ◽  
...  

CuO/CNT composites were synthesized via simple and rapid microwave approach. The nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Further, the electrochemical performances of CuO/CNT composites were evaluated. The prepared samples displayed high specific capacitances of 164.5[Formula: see text]F[Formula: see text]g[Formula: see text] at 1[Formula: see text]A[Formula: see text]g[Formula: see text], during the cycle process, the capacitance value aggrandized to 274.7[Formula: see text]F[Formula: see text]g[Formula: see text], and the capacitance remained at 166% of the primary value after 10 000 turns. Moreover, the CuO/CNT//AC asymmetric supercapacitor (ASC) exhibited an energy density of 17.08[Formula: see text]Wh[Formula: see text]kg[Formula: see text] at 775[Formula: see text]W[Formula: see text]kg[Formula: see text] and excellent electrochemical stability in 6M KOH aqueous electrolyte, showing its enormous potential in energy-storage devices.


Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3371 ◽  
Author(s):  
Svensson ◽  
Grins ◽  
Eklöf ◽  
Eriksson ◽  
Wardecki ◽  
...  

The CO2 adsorption on various Prussian blue analogue hexacyanoferrates was evaluated by thermogravimetric analysis. Compositions of prepared phases were verified by energy-dispersive X-ray spectroscopy, infra-red spectroscopy and powder X-ray diffraction. The influence of different alkali cations in the cubic Fm3m structures was investigated for nominal compositions A2/3Cu[Fe(CN)6]2/3 with A = vacant, Li, Na, K, Rb, Cs. The Rb and Cs compounds show the highest CO2 adsorption per unit cell, 3.3 molecules of CO2 at 20 C and 1 bar, while in terms of mmol/g the Na compound exhibits the highest adsorption capability, 3.8 mmol/g at 20 C and 1 bar. The fastest adsorption/desorption is exhibited by the A-cation free compound and the Li compound. The influence of the amount of Fe(CN)6 vacancies were assessed by determining the CO2 adsorption capabilities of Cu[Fe(CN)6]1/2 (Fm3m symmetry, nominally 50% vacancies), KCu[Fe(CN)6]3/4 (Fm3m symmetry, nominally 25% vacancies), and CsCu[Fe(CN)6] (I-4m2 symmetry, nominally 0% vacancies). Higher adsorption was, as expected, shown on compounds with higher vacancy concentrations.


Author(s):  
Yu-Chun Chuang ◽  
Chou-Fu Sheu ◽  
Gene-Hsiang Lee ◽  
Yu-Sheng Chen ◽  
Yu Wang

High-resolution X-ray diffraction experiments and atom-specific X-ray absorption experiments are applied to investigate a series of square planar complexes with the non-innocent ligand of maleonitriledithiolate (mnt), [S2C2(CN)2]z−, containingM—S bonds. Four complexes of (PyH)z[M(mnt)2]z−, whereM= Ni or Cu,z= 2 or 1 and PyH+= C5NH6+, were studied in order to clarify whether such one-electron oxidation–reduction, [M(mnt)2]2−/[M(mnt)2]1−, is taking place at the metal or the ligand site. Combining the techniques of metalK-,L-edge and SK-edge X-ray absorption spectroscopy with high-resolution X-ray charge density studies, it is unambiguously demonstrated that the electron redox reaction is ligand based and metal based for Ni and Cu pairs, respectively. The bonding characters in terms of topological properties associated with the bond critical points are compared between the oxidized form [ML]−and the reduced form [ML]2−. In the case of Ni complexes, the formal oxidation state of Ni remains as Ni2+and each mnt ligand carries a 2− charge in [Ni(mnt)2]2−, but only one of the ligands is formally oxidized in [Ni(mnt)2]1−. In contrast, in the case of Cu complexes, the mnt remains as 2− in both complexes, but the formal oxidation states of the metal are Cu2+and Cu3+. Bond characterizations andd-orbital populations will be presented. The complementary results of XAS, XRD and DFT calculations will be discussed. The conclusion on the redox reactions in these complexes can be firmly established.


2018 ◽  
Vol 13 (10) ◽  
pp. 1522-1532 ◽  
Author(s):  
S. Nivetha ◽  
K. Kaviyarasu ◽  
A. Ayeshamariam ◽  
N. Punithavelan ◽  
R. Perumalsamy ◽  
...  

Photovoltaic material plays a vital role in the production of energy storage devices, more specifically in solar cell fabrications. In this work, ITO:F-doped materials were coated over the silicon substrate through spray pyrolysis technique. X-ray diffraction studies were conducted for porous silicon (PSi) coated with ITO:F structures formed at different current densities. This pore formation is evident from the broad peak at 69.9°, revealing an amorphous-like nature but at the same location where the single crystalline peak also is observed. These pores are explicitly shown in the SEM images in which very fine surface fragments are observed. At 20 mA/cm2, well-defined porous patterns that were uniformly distributed over the surface were observed. The microstructures observed via atomic force microscopy for these PSi coated with ITO:F structures are randomly aligned and almost evenly distributed over the entire surface of these nanorods, which are approximately 40 nm. Radiative recombination of electrons from a level in the conduction band or its subband to a level at an energy difference of greater than 1.7 eV in the valance band or its subband will emit visible light.


2009 ◽  
Vol 294 ◽  
pp. 85-92 ◽  
Author(s):  
A.A. Ibrahim

Lead sulfide (PbS) thin films were prepared by thermal evaporation onto glass substrates from PbS powder. The structure and DC electrical properties of evaporated PbS thin film sandwich structures with thicknesses (d) up to 600 nm have been investigated. X-ray diffraction studies showed that the films were crystalline, with a preferred orientation in the [111] direction. Capacitance measurements indicated that the films had a relative permittivity of 5.7. Room-temperature current density-voltage (J–V) characteristics revealed ohmic conduction below a transition voltage (Vt) and a power–law dependence with an exponent of ≈ 2 at higher voltages. This behaviour was interpreted in terms of space–charge limited conductivity controlled by an exponential distribution of traps below the conduction band edge. Further evidence for this conduction process was provided by a linear dependence of Vt upon d2. Analysis of the results yielded a room temperature electron concentration no of ≈ (3.9 – 5.4) x 109 m-3.


2019 ◽  
Vol 37 (4) ◽  
pp. 570-576
Author(s):  
E. Sheha ◽  
E.M. Kamar

AbstractMagnesium batteries are regarded as promising candidates for energy storage devices owing to their high volumetric capacity. The practical application is hindered, however, by strong electrostatic interactions between Mg2+ and the host lattice and due to the formation of a passivation layer between anode and electrolyte. V2O5 is a typical intercalation compound with a layered crystal structure ((0 0 1) interlayer spacing ~ 11.53 Å), which can act as a good host for the reversible insertion and extraction of multivalent cations. Herein, we have presented an investigation of the effects of S injection on the structure, electrochemical performance and Mg2+ diffusion in V2O5 cathode materials for Mg-ion batteries. The V2O5/S composite structure was investigated using X-ray diffraction, field-emission scanning electron microscope and energy dispersive X-ray spectroscopy. The integrated electrode exhibits an improvement in the electrical and electrochemical properties compared to the V2O5 electrode. The as-prepared V2O5/S composite has an initial discharge capacity of 310 mAh g−1 compared to 160 mAh g−1 for the V2O5 electrode. The V2O5/S composite is a promising cathode material for magnesium-ion battery applications.


2010 ◽  
Vol 12 (2) ◽  
pp. 151 ◽  
Author(s):  
K.K. Kudaybergenov ◽  
E.K. Ongarbayev ◽  
Z.A. Mansurov

<p>Mechanical recovery of oil by oil sorbents is one of the most important countermeasures in marine oil-spill response. The preparation of oil-sorbents from agricultural waste increases economic return and reduces pollution. The sorption capacities of the carbonized rice husks and the apricot stone compared in relation to different petroleum products. Sorption capacity showed strong dependence on the particle size of sorbent and oil film thickness. The phase composition, microstructure and morphology of the composite material C/SiO<sub>2</sub>, prepared by carbonize of rice husks were investigated by X-ray diffraction analysis, FTIR spectrometry and scanning election microscope<em> </em>(SEM).</p>


Sign in / Sign up

Export Citation Format

Share Document