The Study of the Processes of Structure Formation in the System "Portland Cement-Carbon Nanotubes-Surfactant" from the Point of View of Physicochemical Mechanics of Dispersed Systems

2020 ◽  
Vol 864 ◽  
pp. 158-163
Author(s):  
Kateryna Pushkarova ◽  
Andrii Plugin ◽  
Maryna Sukhanevych

The article presents the studies of the processes of structure formation in the system "cement-plasticizer - crude carbon nanotubes", established the relationship with the parameters of the structure, physical-mechanical and operational properties of composite materials from the standpoint of physicochemical mechanics of dispersed systems and shows the influence of processes on the physical-mechanical properties of cement composites.

1987 ◽  
Vol 114 ◽  
Author(s):  
I. Odler

ABSTRACTA series of fiber-cement composite materials was prepared by dispersing different amounts of polyacrylnitril (PAN) fibers in portland cement suspensions of variable water/solid ratios. The samples were used to study the effect of the volume of fibers and the water-cement ratio on the physico-mechanical properties of the material. The distribution of the fibers within the cementitious matrix and the fracture mechanism were studied by SEM and compared with those existing in glass fiber-cement composites.


2009 ◽  
Vol 1242 ◽  
Author(s):  
Rivas-Vázquez L.P. ◽  
Suárez-Orduña R. ◽  
Valera-Zaragoza M. ◽  
Máas-Díaz A. De la L. ◽  
Ramírez-Vargas E.

ABSTRACTThe effects of waste polyethylene aggregate as admixture agent in Portland cement at different addition polyethylene/cement ratios from 0.0156 to 0.3903 were investigated. The reinforced samples were prepared according the ASTM C 150 Standard (samples of 5 × 5 × 5 cm). The reinforcing fibers were milling at a size of 1/25 in diameter, form waste and used them to evaluate the effects in mechanical properties in cement-based composites. The evaluation of polyethylene as additive was based on results of density and compression tests. The 28-day compressive strength of cement reforced with plastic waste at a replacement polyethylene/cement ratio of 0.0468 was 23.5 MPa compared to the control concrete (7.5 MPa). The density of cement replaced with polyethylene varies from 2.114 (0% polyethylene) to 1.83 g/cm3 by the influence of polyethylene.


Vestnik MGSU ◽  
2020 ◽  
pp. 999-1006
Author(s):  
Svetlana V. Samchenko ◽  
Olga V. Alexandrova ◽  
Anton Yu. Gurkin

Introduction. The use of limestone in cement compositions as an additional cementing agent solves both environmental and economic problems, namely, reduction of construction costs. In this regard, the study of the properties of the granulometric composition and volumetric content of cement composites, containing limestone, becomes increasingly important. The mission of this research is to optimize the properties of composite materials containing Portland cement and limestone by changing the granulometric composition of flour limestone. Materials and methods. Limestone, having three different Blaine milling fineness values of 250, 300 and 450 m2/kg, was used; its content reached 10, 15, 25 and 35 %. Cement and sand mortars were applied for testing purposes. The influence of the granulometric composition of limestone on the workability and compressive strength of composite cement was determined. Results. The effect of limestone on the limit shear stress becomes more pronounced when the amount of limestone increases to 25 and 35 %. This is most noticeable for limestone with a high content of fine fractions of 5–20 µm. The use of finely milled limestone increases the initial strength of the composite material. By adding 10 and 15 % of such limestone we can increase the strength by 16–20 %, and supplementary 25–35 % of limestone increases strength by 5–8 %. Strength enhancement is due to the reactivity of limestone and formation of calcium hydrocarbon aluminate 3CaO∙Al2O3∙СаСО3∙12H2O, which promotes formation of the crystal framework of the cement matrix. Additional formation of crystalline hydrates in the initial coagulation structure deteriorates the mortar workability, but increases its strength. Conclusions. The use of coarse-grained limestone significantly improves mortar workability, while the use of fine-grained limestone increases its content without reducing its strength. The granulometric composition of ground limestone shall be as close as possible to the granulometric composition of cement for the properties of composite materials containing Portland cement and limestone to be optimized.


2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


Author(s):  
Mehran Tehrani ◽  
Ayoub Y. Boroujeni ◽  
Majid Manteghi ◽  
Zhixian Zhou ◽  
Marwan Al-Haik

Electromagnetic (EM) waves, such as electronic noise and radio frequency interference can be regarded as an invisible electronic pollution which justifies a very active quest for effective electromagnetic interference (EMI) shielding materials. Highly conductive materials of adequate thickness are the primary solutions to shield against EMI. Equipment cases and basic structure of space aircraft and launch vehicles have traditionally been made of aluminum, steel and other electrically conductive metals. However, in recent years composite materials have been used for electronic equipment manufacturing because of their lightweight, high strength, and ease of fabrication. Despite these benefits, composite materials are not as electrically conductive as traditional metals, especially in terms of electrical grounding purposes and shielding. Therefore, extra effort must be taken to resolve these shortcomings. The present work demonstrates a study on developing hybrid composites based on fiberglass with surface grown carbon nanotubes (CNTs) for EMI applications. The choice of fiberglass is primarily because it naturally possesses poor electrical conductivity, hence growing CNTs over glass fiber surface can significantly improve the conductivity. The fabrics were sputter-coated with a thin layer of SiO2 thermal barrier prior to growing of CNTs. The CNTs were grown on the surface of woven fiberglass fabrics utilizing a relatively low temperature technique. Raw fiberglass fabric, SiO2 coated fabric, and SiO2 coated fabric which was subjected to the identical heat treatment as the samples with CNTs were also prepared. Two-layers composite specimens based on different surface treated fiberglass fabrics were fabricated and their EMI shielding effectiveness (SE) was measured. The EMI SE of the hybrid CNT-fiberglass composites was shown to be 5–10 times of the reference samples. However, the tensile mechanical properties of the composites based on the different above mentioned fibers revealed significant degradation due to the elevated CNT growth temperature and the addition of coating layer and CNTs. To further probe the structure of the hybrid composites and the inter-connectivity of the CNTs from one interface to another, sets of 20-layers composites based on different surface treated fabrics were also fabricated and characterized.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4149
Author(s):  
Laura M. Echeverry-Cardona ◽  
Natalia Álzate ◽  
Elisabeth Restrepo-Parra ◽  
Rogelio Ospina ◽  
Jorge H. Quintero-Orozco

This study shows the energy optimization and stabilization in the time of solutions composed of H2O + TX-100 + Multi-Wall Carbon Nanotubes (MWCNTs), used to improve the mechanical properties of Portland cement pastes. For developing this research, sonication energies at 90, 190, 290, 340, 390, 440, 490 and 590 J/g are applied to a colloidal substance (MWCNTs/TX-100 + H2O) with a molarity of 10 mM. Raman spectroscopy analyses showed that, for energies greater than 440 J/g, there are ruptures and fragmentation of the MWCNTs; meanwhile at energies below 390 J/g, better dispersions are obtained. The stability of the dispersion over time was evaluated over 13 weeks using UV-vis spectroscopy and Zeta Potential. With the most relevant data collected, sonication energies of 190, 390 and 490 J/g, at 10 mM were selected at the first and the fourth week of storage to obtain Portland cement specimens. Finally, we found an improvement of the mechanical properties of the samples built with Portland cement and solutions stored for one and four weeks; it can be concluded that the MWCNTs improved the hydration period.


2013 ◽  
Vol 818 ◽  
pp. 124-131
Author(s):  
Assed N. Haddad ◽  
Jorge F. de Morais ◽  
Ana Catarina J. Evangelista

Nanomaterials could change the face of modern construction because they are more resistant, more durable and have notable features. Concrete is a material widely used in construction industry worldwide. Carbon nanotube has been considered a new and outstanding material in nanoscience field with great potential application in the construction industry. The study presented in this paper, aims at assessing how carbon nanotubes can affect cement composites and so the concrete, in terms of microstructure and physical-mechanical properties. Three different ratios of carbon nanotubes have been searched: 0.20%, 0.40% and 0.60%. To evaluate the mechanical properties of the samples, destructive and non-destructive tests were carried out to obtain compressive strength, tensile strength by diametrical compression, dynamic modulus of elasticity as well as the determination of their deformation properties. This work also aims to motivate entrepreneurs and professionals in the sector of civil engineering on the advantages of the application of nanotechnology in construction, as well as providing information to the scientific and technological community in general.


2015 ◽  
Vol 802 ◽  
pp. 112-117 ◽  
Author(s):  
Ali Yousefi ◽  
Norazura Muhamad Bunnori ◽  
Mehrnoush Khavarian ◽  
Taksiah A. Majid

The potential properties of carbon nanotube-cement based materials strongly depend on the dispersion of carbon nanotubes (CNTs) within the cement matrix and the bonding between CNTs and the hydrated cement. The homogeneous dispersion of CNTs in the cement matrix yet is one of the main challenges due to strong van der Waals forces between nanotubes. In this study, a polycarboxylic ether based superplasticizer and ultra-sonication technique was used for dispersion of multi-walled carbon nanotubes (MWCNTs). Portland cement concrete specimens with different concentrations of MWCNTs (0.04 and 0.1 % by the weight of cement), with and without the presence of superplasticizer were investigated. Compressive strength test results revealed a significant improvement in mechanical properties of sample containing 0.1 % MWCNTs and 0.2 % superplasticizer. Moreover, field emission scanning electron microscopy (FESEM) images of fractured surfaces of hardened specimens showed a good dispersion of MWCNTs within the cement matrix. This method was developed to facilitate the uniform dispersion of MWCNTs in the cementitious concrete for better reinforcement in nanoscale and mechanical properties enhancement by transfer of load between the nanotubes and matrix.


1982 ◽  
Vol 104 (1) ◽  
pp. 60-65
Author(s):  
Yuichi Tanaka ◽  
Hakaru Saito ◽  
Ikuo Tokura ◽  
Katsuya Ikawa

The main purpose of this paper is to present some data on the mechanical and physical properties of compacted-vermicular graphite cast iron and to give a reasonable interpretation to the characteristics by using numerical indexes indicating the shape of graphite flakes in the structure. After describing the preparation of the material and a new method for measuring thermal diffusivity of the iron, the influence of kind and amount of alloy added for treatment and of cooling rate upon the graphite shape is discussed by using the indexes of the structure. The thermal diffusivities and mechanical characteristics such as tensile strength and hardness are shown as functions of the indexes to clarify the relationship between them. Furthermore, the present indexes are compared with those proposed earlier to find which is most suitable for the cast iron treated in this work. Authors propose a definition of compacted-vermicular graphite cast iron, which is reasonable from the physico-mechanical point of view, and also show some typical mechanical properties and measures required to produce such cast iron with desirable features.


Sign in / Sign up

Export Citation Format

Share Document