Numerical Simulation of Physical-Mechanical Properties Based on the Composition of GTAW Weld Metal Alloys with Dissimilar Base Metals

2021 ◽  
Vol 892 ◽  
pp. 150-158
Author(s):  
Sugianto ◽  
Riswanda ◽  
Kadir Harlian ◽  
Akhyar Akhyar ◽  
Aminur ◽  
...  

Dissimilar weld-metal joints in aluminum alloys 5083 and 6061-T6 are often found in aircraft, railroad structures, ships, bridges, oil platforms, and building structures. However, welding of dissimilar metals is relatively more difficult due to the different metallurgy and thermophysical properties of the two alloys. The purpose of this study is to evaluate the physical-mechanical properties of the Tungsten Arc Welding (GTAW) process through numerical simulations of different welded joints between the 5083 and 6061-T6 aluminum alloys. The GTAW welding simulation process is carried out by 300 x 100 x 3 mm plate butt joints along 300 mm. GTAW weld metal is prepared for tensile test samples and metal alloy composition, the test is observed in the base metal and welded area. The results of the chemical composition test of the weld metal obtained that the composition is close to Al 5083 base metal so that the mechanical properties of the weld metal tend to be identical with Al 5083 alloy. The results of numerical simulation on the mechanical properties of GTAW weld metal at temperature conditions of 25 to 700 °C obtained several things, including 1) the range of thermal conductivity decreased from 174.393 to 86.424 W/mK. 2) The density increased from 2,348 to 2,663 gr/cm3. 3), the young modulus appears to decrease from 68,667 to 0 GPa. 4) the shear modulus decreases from 25,724 to 0 GPa. 5) the type of heat increases from 0.904 to 17,306 J/gK, and 6) the Poisson ratio increased from 0.335 to 0.5.

2016 ◽  
Vol 258 ◽  
pp. 635-638 ◽  
Author(s):  
Michal Junek ◽  
Marie Svobodová ◽  
Jiří Janovec ◽  
Jakub Horváth

This article deals with the results of mechanical testing and structural analysis of sections of narrow gap orbital welded P91 steel on tube OD 355.6 x 40 mm. The evaluation of mechanical properties was based on tensile test at room temperature on mini-tensile specimens and on measurement of modulus of elasticity. Weld was cut longitudinally into 9 narrow slices by using waterjet. From these slices 108 flat mini-tensile specimens (dimensions of gauge is 2 x 2 mm) were prepared. In experimental part microstructure evaluation and documentation of fracture surface of each mini-tensile specimen were carried out. The aim of these experiments was to assess the mechanical properties of the individual sections of the weld (base metal, heat affected zone and weld metal). These data can be used for new approaches of FEM modelling of welds considering heat affected zone like a combination of different materials with different mechanical properties, which connect the thermally unaffected base metal and weld metal.


2010 ◽  
Vol 654-656 ◽  
pp. 408-411
Author(s):  
Woo Seog Ryu ◽  
Sung Ho Kim ◽  
Dae Whan Kim

High Cr ferritic/martensitic steels are demanded to join using favorable welding processes with economical and metallurgical advantages in order to apply to the thick-walled reactor pressure vessel of a very high temperature gas cooled reactor. Narrow gap welding technology was adopted to weld a thick-walled 9Cr-1Mo-1W steel with thickness of 110mm. The welding integrity was checked by non-destructive examination, optical microscopy and hardness test, and the homogeneity through welding depth was checked by absorbed impact energy and tensile strength. The optimizing welding conditions resulted that a narrow U-grooved gap with almost parallel edges was sound in actual practice, and the coarse grain zone was minimized in the heat affected zone. The absorbed energy of 75±25 J through welding depth was acceptable in scatter band to check the uniformity through the welding depth. The ultimate tensile stress and yield stress were about the same through welding depth at 650±10 MPa and 500±10 MPa, indicating no difference through welding depth. Elongation was also almost same through depth, and the fracture surface was appeared as a normal. The weld metal had similar mechanical properties to base metal. The upper self energy of weld metal was 194J, and the ductile-brittle transition temperature was 30°C. The tensile behavior was the typical trend with temperature, and YS and UTS of weldment were slightly higher than base metal by nearly below 10%. Thus, it concluded that the soundness of the narrow gap welding of a thick-walled 9Cr-1Mo-1W steel was confirmed in terms of the welding uniformity through the depth and mechanical properties.


2020 ◽  
Vol 58 (8) ◽  
pp. 540-549
Author(s):  
Jinhyeok Bang ◽  
Yongjoon Kang ◽  
Namkyu Kim ◽  
Seong-Moon Seo ◽  
Sanghoon Lee ◽  
...  

The effect of aging heat treatment conditions on the mechanical properties and microstructure of the base and weld metal of Alloy 282 superalloy was investigated. The aging heat treatment conditions employed in this study were as follows: two-steps (1010 °C for 2 hours plus 788 °C for 8 hours) and one-step at 788 °C, 738 °C, and 688 °C for 4 hours. The base metal with the one-step aged condition exhibited lower hardness but longer creep life than that treated with the two-step aged condition. The base metal subjected to the two-step aging exhibited the highest hardness and the shortest creep life, mainly due to the precipitation of Mo-rich M6C-type carbides and coarse <i>γ</i>' (Ni3(Al,Ti)) phase. For the weld metal, regardless of aging heat treatment conditions, creep elongation and life decreased significantly compared to the base metal, due to the coarse effective grain size and inhomogeneous distribution of <i>γ</i>' precipitates.


2020 ◽  
Vol 402 ◽  
pp. 90-99
Author(s):  
Riswanda ◽  
Akhyar ◽  
Sugianto ◽  
Harlian Kadir ◽  
Samsul Rizal

Dissimilar weld metal joints such as aluminum alloys 5083 and 6061-T6 are mostly found in the application of aircraft, railroad structures, ships, bridges, and oil platforms and building structures. However, dissimilar welding metal is relatively more difficult due to metallurgical differences and the thermophysical properties of two different materials. The purpose of this study is to study the effect of shoulder rotation variations on the Friction Stir Welding (FSW) process through numerical simulations on the mechanical properties of dissimilar weld joints between two series of aluminum alloys, and there are 5083 and 6061-T6. The FSW welding simulation process is conducted by butt joints type on 300 x 100 x 3 mm of both aluminum plates with weld distance is 300 mm. Shoulder rotation variations are carried out for this process include 1,200, 1,400 and 1,600 rpm. Results show maximum temperature distributions are 467 oC for 1,200 rpm, 499 °C for 1,400 rpm and 527 °C for 1,600 rpm, respectively. Maximum temperatures appear close to the liquid temperature of Al-6061-T6 and Al 5083 base metals, which is about 600 °C. Physical and mechanical analysis at 1,200 rpm (the rotation parameter) can be seen as the coarse weld beads on the microstructure, and the weld joint is still weak. The physical properties observed that coarse weld beads on microstructures, the tensile strength obtained 138 MPa at 1,200 rpm (the rotation parameter). The maximum hardness test occurred 47.98 (Kg/mm2 in averages) at 1,400 rpm. The tensile strength of the dissimilar FSW process is 151 MPa occurred at 1,600 rpm of shoulder rotation speed. While the fracture position occurs in the nugget weld area for all parameters and corresponds with the result of hardness tests, it shows that low hardness value for the whole weld area for all parameters.


Author(s):  
D. B. Ballard ◽  
A. L. Gugeler

Aluminum and aluminum alloys can be coated with porcelain enamel slip which is fired at 1000°F for approximately 10 minutes. This produces a material with a surface layer (about 0.1 mm thick) which has the properties of porcelain and the basic mechanical properties of a light ductile metal. A problem termed spalling may arise after weathering or exposure to a corrosive salt solution, if the base metal is not chosen carefully or pretreatment of the metal is not correct. A typical failure of this type on a test panel is illustrated in Fig. 1. The spalling failure initiates at pin holes, scratches and edges, then spreads laterally by attack at the interface between the enamel and base metal. An electron fractograph at the edge of a circular spalled area on a test panel of an improperly pretreated 6061 alloy is shown in Fig. 2. The corroded metal is on the bottom and the porcelain on the top. The narrow band through the center is the fracture edge of the porcelain enamel adjacent to the interface.


CORROSION ◽  
10.5006/0515 ◽  
2012 ◽  
Vol 68 (8) ◽  
pp. 762-773 ◽  
Author(s):  
A. Ravi Shankar ◽  
S. Niyanth ◽  
M. Vasudevan ◽  
U. Kamachi Mudali

AISI Type 304L (UNS S30403) austenitic stainless steels are widely used in spent nuclear fuel reprocessing plants, and welding is an indispensable tool used for joining these materials. In the present study, manual gas tungsten arc-welded (M-GTAW) and activated gas tungsten arc-welded (A-GTAW) weldments of Type 304L stainless steel were prepared to examine the microstructural and corrosion behavior of the weldments. A total of 6 passes were required to complete the 6 mm thick sample welding, and 16 passes were required for 12 mm thick sample welding using the M-GTAW process, compared to single-pass A-GTAW welding. Characterization of weld joints was done by radiography, optical microscopy, microhardness tester, a feritscope, and scanning electron microscopy (SEM). The optical microstructure of the fusion zone of weld joints showed delta ferrite in various morphologies. The presence of delta ferrite stringers were observed in the weld joints, extending from the weld metal to the base metal. The corrosion rate results showed that the M-GTAW sample showed only a marginal increase in the corrosion resistance when compared to those welded by the single-pass A-GTAW process. SEM examination revealed the morphology of attack in the base metal was predominantly intergranular while in the weld metal it was interdendritic. The SEM micrograph also showed preferential attack of the delta ferrite stringers.


2012 ◽  
Vol 510-511 ◽  
pp. 98-104 ◽  
Author(s):  
S.R.S. Bakar ◽  
M.Y. Ahmad ◽  
Muhammad Faizol Ahmad Ibrahim ◽  
A. Jalar ◽  
S.J.S. Djalil ◽  
...  

This paper presents an investigation on microstructure and mechanical properties of welded AA 6061-T6 plate using filler metal ER 4043 in the Gas Metal Arc Welding (GMAW) process. Double pass welding technique on both sides of 5 mm thick plate or more is required to provide sufficient weld pool in the joint. The weld metal of the first welding pass exhibits finer microstructure than the second welding pass. The size of Mg2Si precipitations in the heat-affected zone (HAZ) region is larger than in the base metal due to the welding process that reheats the alloy from the T6 condition above the eutectic temperature. Rapid cooling of the first pass and moderate cooling rate for the second pass during weld metal solidification eventually resulted in significantly change the shape and size in the microstructure that had affected the hardness and mechanical properties. Comparisons made to the base metal on the hardness test results found that the hardness of first pass weld metal dropped by 15%, and by 37.5% for the second weld metal, while the hardness at the boundaries of the first and second weld metals dropped by 32.5%. The ultimate tensile strength and strain of the weld joint with ER 4043 also decreased by 48% and 94% respectively. Based on the findings of the study, it is concluded that even though the double sided welding technique is able to overcome shallow weld penetration to avoid stress concentration that leads to the fatigue failure, the metallurgical changes eventually contributes to degradation of mechanical properties.


2018 ◽  
Vol 37 (7) ◽  
pp. 649-654 ◽  
Author(s):  
Wang Shuo ◽  
Wei Limin ◽  
Cheng Yi ◽  
Tan Shuping

AbstractThe microstructures and mechanical properties of dissimilar weld joints between T92 and Super 304H steels were investigated. Dissimilar weld joints with four groove angles were constructed using gas tungsten arc welding. The results showed that post-weld heat treatment improved the mechanical properties of the dissimilar weld joints. The optimal groove angle for T92/Super 304H dissimilar weld joints was found to be 20°, considering mechanical properties. Furthermore, the transformation from equiaxed dendrites to columnar dendrites was observed in the weld metal. Epitaxial growth and delta ferrites were found around the fusion line between the Super 304H and the weld metal.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6591
Author(s):  
Anupam Sauraw ◽  
Atul Kumar Sharma ◽  
Dariusz Fydrych ◽  
Sachin Sirohi ◽  
Ankur Gupta ◽  
...  

This article deals with the dissimilar joining of two different grade Cr-Mo steel (2.25Cr-1Mo: P22 and modified 9Cr-1Mo: P91) for power plant application. The dissimilar butt-welded joint was produced for conventional V groove design by using the gas tungsten arc welding (GTAW) process with the application of an ERNiCrMo-3 Ni-based super alloy filler. A microstructure characterization was performed to measure the inhomogeneity in the microstructure and element diffusion across the interface in a welded joint. The experiments were also performed to evaluate the mechanical properties of the dissimilar welded joint in as-welded (AW) and post-weld heat treatment (PWHT) conditions. An acceptable level of the mechanical properties was obtained for the AW joint. After PWHT, a significant level of the element diffusion across the interface of the weld metal and P22 steel was observed, resulting in heterogeneity in microstructure near the interface, which was also supported by the hardness variation. Inhomogeneity in mechanical properties (impact strength and hardness) was measured across the weldments for the AW joint and was reduced after the PWHT. The tensile test results indicate an acceptable level of tensile properties for the welded joint in both AW and PWHT conditions and failure was noticed in the weak region of the P22 steel instead of the weld metal.


Sign in / Sign up

Export Citation Format

Share Document