Development of Chitosan-Gelatin Nanofibers with Cellulose Nanocrystals for Skin Protection Applications

2021 ◽  
Vol 893 ◽  
pp. 45-55
Author(s):  
Ana S. Ribeiro ◽  
Sofia M. Costa ◽  
Diana P. Ferreira ◽  
Houcine Abidi ◽  
Raul Fangueiro

In this work, natural-based and biodegradable nanofibers were produced by electrospinning for drug delivery and wound dressing applications, using gelatin (Gel), chitosan (CS), cellulose nanocrystals (CNC) and natural propolis extract. The polymeric formulations and electrospinning parameters were optimized, resulting in the development of Gel/CS nanofibers with mean diameters of 97 nm. CNC were successfully introduced into the optimized Gel/CS solution and the viscosity and conductivity values were recorded. The developed nanofibers were characterized using FESEM, ATR-FTIR, TGA and WCA. The incorporation of different CNC concentrations improved the solutions’ electrospinnability and the membranes’ physical integrity. Defect-free and uniform Gel/CS/CNC nanofibers were observed by FESEM images, and the fibers’ diameters slight increased. The hydrophilic character was maintained after the CNC incorporation. Finally, Gel/CS/CNC/Propolis nanofibers demonstrated antibacterial activity against both Gram-negative (E. coli) and Gram-positive (S. aureus) bacteria.

2020 ◽  
Vol 16 (4) ◽  
pp. 481-488
Author(s):  
Heli Sanghvi ◽  
Satyendra Mishra

Background: Curcumin, one of the most important pharmacologically significant natural products, has gained significant consideration among scientists for decades since its multipharmacological activities. 1, 3-Dicarbonyl moiety of curcumin was found to be accountable for the rapid degradation of curcumin molecule. The aim of present work is to replace 1, 3-dicarbonyl moiety of curcumin by pyrazole and phenylpyrazole derivatives with a view to improving its stability and to investigate the role of substitution in N-phenylpyrazole curcumin on its antibacterial activity against both Gram-positive as well as Gram-negative bacteria. Methods: Pyrazole derivatives of curcumin were prepared by heating curcumin with phenyhydrazine/ substituted phenyhydrazine derivatives in AcOH. The residue was purified by silica gel column chromatography. Structures of purified compounds were confirmed by 1H NMR and Mass spectroscopy. The synthesized compounds were evaluated for their antibacterial activity by the microdilution broth susceptibility test method against gram positive (S. aureus) and gram negative (E. coli). Results: Effects of substitution in N-phenylpyrazole curcumin derivatives against S. aureus and E. coli were studied. The most active N-(3-Nitrophenylpyrazole) curcumin (12) exhibits twenty-fold more potency against S. aureus (MIC: 10μg/mL)) and N-(2-Fluoroophenylpyrazole) curcumin (5) fivefold more potency against E. coli (MIC; 50 μg/mL) than N-phenylpyrazole curcumin (4). Whereas, a remarkable decline in anti-bacterial activity against S. aureus and E. coli was observed when electron donating groups were incorporated in N-phenylpyrazole curcumin (4). Comparative studies of synthesized compounds suggest the effects of electron withdrawing and electron donating groups on unsubstituted phenylpyrazole curcumin (4). Conclusion: The structure-activity relationship (SAR) results indicated that the electron withdrawing and electron donating at N-phenylpyrazole curcumin played key roles for their bacterial inhibitory effects. The results of the antibacterial evaluation showed that the synthesized pyrazole derivatives of curcumin displayed moderate to very high activity in S. aureus. In conclusion, the series of novel curcumin derivatives were designed, synthesized and tested for their antibacterial activities against S. aureus and E. coli. Among them, N-(3-Nitrophenylpyrazole curcumin; 12) was most active against S. aureus (Gram-positive) and N-(2-Fluoroophenylpyrazole) curcumin (5) against E. coli (Gram-negative) bacteria.


2012 ◽  
Vol 7 (10) ◽  
pp. 1934578X1200701 ◽  
Author(s):  
María Inés Isla ◽  
Yanina Dantur ◽  
Ana Salas ◽  
Carolina Danert ◽  
Catiana Zampini ◽  
...  

The effect of seasonality on Argentine propolis collected during one year on its phenolic and flavonoid content and on the growth of Gram-positive and Gram-negative antibiotic resistant bacteria and Candida species was evaluated. Extracts of propolis samples collected in the summer and spring showed higher phenolic and flavonoid contents than the samples collected in other seasons (5.86 to 6.06 mg GAE/mL and 3.77 to 4.23 mg QE/mL, respectively). The propolis collected in summer and autumn showed higher antibacterial activity (30 μg/mL) than the other samples (MIC values between 30 and 120 μg/mL). No antibacterial activity was detected against Gram-negative bacteria. Also, these extracts were able to inhibit the development of five Candida species, with MFC values of 15-120 μg/mL. Pharmaceutical formulations containing the more active propolis extract were prepared. The hydrogel of acrylic acid polymer containing summer propolis extract as an antimicrobial agent showed microbiological, physical and functional stability during storage for 180 days. The pharmaceutical preparation, as well as the propolis extracts, was active against Candida sp. and antibiotic-multi-resistant Gram-positive bacteria. These results reveal that propolis samples collected by scraping in four seasons, especially in summer in Calingasta, San Juan, Argentina, can be used to obtain tinctures and hydrogels with antibacterial and antimycotic potential for topical use.


2019 ◽  
Vol 18 (5) ◽  
pp. 1147-1155 ◽  
Author(s):  
Rehan Khan ◽  
Melis Özkan ◽  
Aisan Khaligh ◽  
Dönüs Tuncel

Water-dispersible glycosylated poly(2,5′-thienylene)porphyrin-based nanoparticles have the ability to generate singlet oxygen in high yields and exhibit light-triggered antibacterial activity against Gram negative bacteria, E. coli as well as Gram positive bacteria, B. subtilis.


2005 ◽  
Vol 2 (2) ◽  
pp. 109-112
Author(s):  
A. K. Parekh ◽  
K. K. Desai

Some new chalcones have been prepared by Claisen-schmidt condensation of ketone and different aromatic aldehydes. These chalcones on condensation with urea in presence of acid gave Pyrimidine-2-ones. The synthesized compounds have been characterized by elemental analysis, IR and1H NMR spectral data. They have been screened for their antibacterial activity against Gram positive bacteria B. subtillis & S. aureus and Gram negative bacteria E. coli & S. typhi.


2013 ◽  
Vol 2 (1) ◽  
pp. 147-152 ◽  
Author(s):  
AM Bukar ◽  
MA Isa ◽  
HS Bello ◽  
AS Abdullahi

The phytochemical screening and antibacterial activity of ethanolic and Methanolic leaves extract of Vernonia amygdalina against five clinical isolates (Staphylococcus aureus, E. coli, Pseudomonas species, Salmonella species and Proteus species) was determined using standard method of analysis. The results of the antibacterial activity of ethanol, methanol and aqueous extract of leaves of V. amygdalina have diameters ranging between 0.4 to 10mm. The plant extracts from the plants had profound activities against gram-positive than gram negative bacteria. From the above studies, it has clearly indicated that V. amygdalina extract may represent new sources of antibacterial drug, if the phytoactive components are purified and proper dosage are determined for administration. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 147-152 DOI: http://dx.doi.org/10.3126/ije.v2i1.9217


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 184-184
Author(s):  
Bernat Canal ◽  
Luis Mesas ◽  
Cinta Sol ◽  
Monica Puyalto ◽  
Ana Carvajal ◽  
...  

Abstract Essential oils (EOs) have different mechanisms, most of them targeting the bacterial wall. This fact can explain differences in the effectivity of EOs between Gram-positive and Gram-negative bacteria. Therefore, combining certain EOs can broaden their individual spectrum of efficacy due to potential synergistic effects. This trial aimed to test the in vitro antibacterial activity of an EO combination (oregano and clove oils) against a collection of relevant bacterial pathogens in swine production. The Gram-negative bacterial species chosen were Salmonella enterica ssp. enterica, Escherichia coli and Brachyspira hyodysenteriae and the Gram-positive bacterial species were Clostridium perfringens and Streptococcus suis. In addition, Lactobacillus fermentum was included to compare the susceptibility between this beneficial intestinal bacteria and the pathogens tested. The broth microdilution method at pH 6 and the subculturing from wells without bacterial growth were used to determine the minimum concentration of active principle necessary to inhibit (MIC) or kill (MBC) the 50% and 90% (MIC50/90/MBC50/90) of the population of every bacteria. The results showed that the lowest MIC50/90 were obtained for B. hyodysenteriae (37.5/75 ppm) while for S. enterica ssp. enterica (150/300 ppm), C. perfringens (150/150 ppm), E. coli (300/300 ppm) and S. suis (150/300 ppm) results were similar. Regarding the MBC50/90; B. hyodysenteriae (18.8/75 ppm) was the most susceptible pathogen, again, compared to S. enterica ssp. enterica (300/300 ppm), C. perfringens (150/150 ppm), E. coli (300/300 ppm) and S. suis (150/300 ppm). In contrast, the highest bacteriostatic/bactericidal concentrations were obtained against L. fermentum (MIC50/90 600/1,200 ppm and MBC50/90 600/2,400 ppm). These results suggest that the bacterial category (Gram-positive or Gram-negative) did not have an influence on the MIC and MBC. It can also be concluded that B. hyodysenteriae is the most susceptible enteropathogen to this EO blend. However, the in vivo effect of this combination of EOs must be further studied.


2021 ◽  
Author(s):  
Elizaveta Sviridova ◽  
Alexandre Barras ◽  
Evgenii Plotnikov ◽  
Antonio Di Martino ◽  
Dominique Deresmes ◽  
...  

In this contribution, we report a facile functionalization method of carbon dots (CDs) by tetraalkylammonium moieties using diazonium chemistry to improve their antibacterial activity against Gram-positive and Gram-negative bacteria. CDs were modified by novel diazonium salts bearing tetraalkylammonium moieties (TAA) with different alkyl chains (C2, C4, C9, C12) for the optimization of antibacterial activity. The functionalized CDs were characterized by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FTIR) spectroscopy, ultraviolet–visible (UV-vis) absorption spectrophotometry and fluorescence spectroscopy to confirm the covalent binding of TAA onto the CDs’ surface. Variation of the alkyl chain allows to reach the strongest antibacterial effect for CDs-C9 towards Gram-positive S. aureus (MIC 3.09±1.10 µg mL-1) and Gram-negative E. coli (MIC 7.93±0.17 µg mL-1) bacteria. In addition, the antibiofilm properties of the CDs-C9 were assessed; full biofilm inhibition was achieved after 6 h (64 µg mL-1) and 2 h (128 µg mL-1) treatment for S. aureus biofilm and >60% suppression of biofilm mass after 6 h (128 µg mL-1) for E. coli biofilm. CDs-C9 demonstrated good biocompatibility on mouse fibroblast (NIH/3T3), HeLa and U-87 MG cell lines for concentrations up to 256 µg mL-1. Collectively, our work highlights the correlation between the surface chemistry of CDs and their antimicrobial performance.


2020 ◽  
Vol 83 (2) ◽  
pp. 331-337
Author(s):  
WENYUE WANG ◽  
RUI WANG ◽  
GUIJU ZHANG ◽  
FANGLI CHEN ◽  
BAOCAI XU

ABSTRACT Naturally occurring monoglyceride esters of fatty acids have been associated with a broad spectrum of antimicrobial activities. We used an automated turbidimetric method to measure the MIC and assess the antimicrobial activity of five monoglycerides (monocaprin, monolaurin, monomyristin, monopalmitin, and monostearin) against pathogenic strains of Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa, and Escherichia coli. The antibacterial activity of monocaprin was highest because its carbon chain is shorter than those of other monoglycerides. The MICs of monocaprin against S. aureus, B. subtilis, P. aeruginosa, and E. coli were 0.32, 0.32, 2.5, and 2.5 mg/mL, respectively. Monocaprin had antibacterial activity under neutral and alkaline conditions (pH 7.0 to 9.0) but had no inhibitory effect on S. aureus, B. subtilis, and E. coli under weakly acidic conditions (pH 6.0). The antibacterial mechanism of monocaprin against gram-positive strains (S. aureus and B. subtilis) resulted from destruction of the cell membrane. In contrast, the antibacterial activity of monocaprin against gram-negative strains (P. aeruginosa and E. coli) was attributed to damage to lipopolysaccharides in the cell walls. Because of its inhibitory effect on both gram-positive and gram-negative bacteria, monocaprin could be used as an antibacterial additive in the food industry. HIGHLIGHTS


2021 ◽  
Vol 14 (5) ◽  
pp. 399
Author(s):  
Lamya H. Al-Wahaibi ◽  
Amer A. Amer ◽  
Adel A. Marzouk ◽  
Hesham A.M. Gomaa ◽  
Bahaa G. M. Youssif ◽  
...  

A novel series of ciprofloxacin hybrids comprising various heterocycle derivatives has been synthesized and structurally elucidated using 1H NMR, 13C NMR, and elementary analyses. Using ciprofloxacin as a reference, compounds 1–21 were screened in vitro against Gram-positive bacterial strains such as Staphylococcus aureus and Bacillus subtilis and Gram-negative strains such as Escherichia coli and Pseudomonas aeruginosa. As a result, many of the compounds examined had antibacterial activity equivalent to ciprofloxacin against test bacteria. Compounds 2–6, oxadiazole derivatives, were found to have antibacterial activity that was 88 to 120% that of ciprofloxacin against Gram-positive and Gram-negative bacteria. The findings showed that none of the compounds tested had antifungal activity against Aspergillus flavus, but did have poor activity against Candida albicans, ranging from 23% to 33% of fluconazole, with compound 3 being the most active (33% of fluconazole). The most potent compounds, 3, 4, 5, and 6, displayed an IC50 of 86, 42, 92, and 180 nM against E. coli DNA gyrase, respectively (novobiocin, IC50 = 170 nM). Compounds 4, 5, and 6 showed IC50 values (1.47, 6.80, and 8.92 µM, respectively) against E. coli topo IV in comparison to novobiocin (IC50 = 11 µM).


Author(s):  
L. Rajanna ◽  
N. Santhosh Kumar ◽  
N. S. Suresha ◽  
S. Lavanya

The in vitro antibacterial assay was carried out against both Gram positive (B. cerus and S. aureus) and Gram negative (E. coli and K. pneumoniae) bacteria. Floral petals of 20 different species of plants were collected and tested for antibacterial activity. The result showed that the petals were active against both Gram positive and Gram negative. Out of 20 floral petals tested, 19 floral petals exhibited antibacterial activity against selected bacterial strains. The minimal inhibitory zone of floral petal discs against human pathogenic bacteria varies from 2 – 6 mm. Rosa carolina and Ruellia tuberosa showed significance inhibition zone for all the bacterial strains while Lantana camara does not show inhibition zone for any of these pathogenic bacteria.


Sign in / Sign up

Export Citation Format

Share Document