Crosslinked Sodium Alginate as a Material for Nanolfiltration Protonic and Aprotonic Solvents

2021 ◽  
Vol 899 ◽  
pp. 745-751
Author(s):  
E.S. Dmitrieva ◽  
E.E. Pankratova ◽  
Tatiana S. Anokhina ◽  
V.V. Vinokurov ◽  
Alexey V. Volkov

In this work, for the first time, salts of bivalent and trivalent metals were used as crosslinking agents for nanofiltration membranes based on sodium alginate. The developed membranes were investigated for chemical stability in protic and aprotic solvents, the dependence of the permeability of these solvents on their sorption into the membrane material was obtained. The separating properties of membranes based on sodium alginate crosslinked with metal cations were investigated. The retention coefficient of the model substance with a molecular weight of 626 g/mol, dissolved in ethanol, was 97%.

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1388
Author(s):  
Jordi Miró ◽  
Jaime Catalán ◽  
Henar Marín ◽  
Iván Yánez-Ortiz ◽  
Marc Yeste

While artificial insemination (AI) with frozen-thawed sperm results in low fertility rates in donkeys, the addition of seminal plasma, removed during cryopreservation, partially counteracts that reduction. Related to this, an apparent inflammatory reaction in jennies is induced following AI with frozen-thawed sperm, as a high amount of polymorphonuclear neutrophils (PMN) are observed within the donkey uterus six hours after AI. While PMN appear to select the sperm that ultimately reach the oviduct, two mechanisms, phagocytosis and NETosis, have been purported to be involved in that clearance. Remarkably, sperm interacts with PMN, but the presence of seminal plasma reduces that binding. As seminal plasma is a complex fluid made up of different molecules, including proteins, this study aimed to evaluate how different seminal plasma fractions, separated by molecular weight (<3, 3–10, 10–30, 30–50, 50–100, and >100 kDa), affect sperm–PMN binding. Sperm motility, viability, and sperm–PMN binding were evaluated after 0 h, 1 h, 2 h, 3 h, and 4 h of co-incubation at 38 °C. Two seminal plasma fractions, including 30–50 kDa or 50–100 kDa proteins, showed the highest sperm motility and viability. As viability of sperm not bound to PMN after 3 h of incubation was the highest in the presence of 30–50 and 50–100 kDa proteins, we suggest that both fractions are involved in the control of the jenny’s post-breeding inflammatory response. In conclusion, this study has shown for the first time that specific fractions rather than the entire seminal plasma modulate sperm–PMN binding within the donkey uterus. As several proteins suggested to be involved in the control of post-AI endometritis have a molecular weight between 30 and 100 kDa, further studies aimed at determining the identity of these molecules and evaluating their potential effect in vivo are much warranted.


Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 794 ◽  
Author(s):  
Su Jeong Lee ◽  
Ji Min Seok ◽  
Jun Hee Lee ◽  
Jaejong Lee ◽  
Wan Doo Kim ◽  
...  

Bio-ink properties have been extensively studied for use in the three-dimensional (3D) bio-printing process for tissue engineering applications. In this study, we developed a method to synthesize bio-ink using hyaluronic acid (HA) and sodium alginate (SA) without employing the chemical crosslinking agents of HA to 30% (w/v). Furthermore, we evaluated the properties of the obtained bio-inks to gauge their suitability in bio-printing, primarily focusing on their viscosity, printability, and shrinkage properties. Furthermore, the bio-ink encapsulating the cells (NIH3T3 fibroblast cell line) was characterized using a live/dead assay and WST-1 to assess the biocompatibility. It was inferred from the results that the blended hydrogel was successfully printed for all groups with viscosities of 883 Pa∙s (HA, 0% w/v), 1211 Pa∙s (HA, 10% w/v), and 1525 Pa∙s, (HA, 30% w/v) at a 0.1 s−1 shear rate. Their structures exhibited no significant shrinkage after CaCl2 crosslinking and maintained their integrity during the culture periods. The relative proliferation rate of the encapsulated cells in the HA/SA blended bio-ink was 70% higher than the SA-only bio-ink after the fourth day. These results suggest that the 3D printable HA/SA hydrogel could be used as the bio-ink for tissue engineering applications.


2002 ◽  
Vol 68 (9) ◽  
pp. 4390-4398 ◽  
Author(s):  
S. A. F. T. van Hijum ◽  
G. H. van Geel-Schutten ◽  
H. Rahaoui ◽  
M. J. E. C. van der Maarel ◽  
L. Dijkhuizen

ABSTRACT Fructosyltransferase (FTF) enzymes produce fructose polymers (fructans) from sucrose. Here, we report the isolation and characterization of an FTF-encoding gene from Lactobacillus reuteri strain 121. A C-terminally truncated version of the ftf gene was successfully expressed in Escherichia coli. When incubated with sucrose, the purified recombinant FTF enzyme produced large amounts of fructo-oligosaccharides (FOS) with β-(2→1)-linked fructosyl units, plus a high-molecular-weight fructan polymer (>107) with β-(2→1) linkages (an inulin). FOS, but not inulin, was found in supernatants of L. reuteri strain 121 cultures grown on medium containing sucrose. Bacterial inulin production has been reported for only Streptococcus mutans strains. FOS production has been reported for a few bacterial strains. This paper reports the first-time isolation and molecular characterization of (i) a Lactobacillus ftf gene, (ii) an inulosucrase associated with a generally regarded as safe bacterium, (iii) an FTF enzyme synthesizing both a high molecular weight inulin and FOS, and (iv) an FTF protein containing a cell wall-anchoring LPXTG motif. The biological relevance and potential health benefits of an inulosucrase associated with an L. reuteri strain remain to be established.


2017 ◽  
Vol 5 (39) ◽  
pp. 20860-20866 ◽  
Author(s):  
Mahdi Fathizadeh ◽  
Huynh Ngoc Tien ◽  
Konstantin Khivantsev ◽  
Jung-Tsai Chen ◽  
Miao Yu

We demonstrated for the first time that inkjet printing can be a low-cost, easy, fast, and scalable method for depositing ultrathin (7.5–60 nm) uniform graphene oxide (GO) nanofiltration membranes on polymeric supports for highly effective water purification.


2016 ◽  
Vol 7 (34) ◽  
pp. 5445-5455 ◽  
Author(s):  
Ming Yang ◽  
Dongxiong Mao ◽  
Sheng Chen ◽  
Hailiang Zhang

A reentrant phase is observed for the first time in dendronized polystyrenes with high molecular weight through regulating the length of tail chains.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012095
Author(s):  
L P Myasnikova ◽  
A K Borisov ◽  
Yu M Boiko ◽  
A P Borsenko ◽  
V F Drobot’ko ◽  
...  

Abstract The ultra-high-molecular-weight polyethylene reactor powders are widely used for the actively developing solvent-free method for producing high-strength high-modulus PE filaments, which includes the compaction and sintering of a powder followed by orientational hardening. To find an appropriate regime of the technological process, it is important to know how the nanostructure changes when transforming from a powder to a precursor for hardening. Nanocrystalline lamellae are characteristics of the powder structure. For the first time, the DSC technique was used to follow changes in the thickness distribution of lamellae in ultra-high-molecular-weight polyethylene reactor powder on its way to a precursor for orientation hardening. It was found that the percentage of thick (>15 nm) and thin (10 nm) lamellae in compacted samples and those sintered at temperatures lower than the melting temperature of PE (140°C) remains nearly the same. However, significant changes in the content of lamellae of different thicknesses were observed in the samples sintered at 145°C with subsequent cooling under different conditions. The influence of the lamellae thickness distribution in precursors on the mechanical characteristics of oriented filaments was discussed.


Author(s):  
Mahrzadi Noureen Shahi ◽  
Muhammad Arshad ◽  
Aman Ullah

Solvent free copolymerization of epoxides derived from fatty acid esters of waste cooking oil with phthalic anhydride using (salen)CrIII Cl as catalyst and n-Bu4NCl/DMAP as co-catalyst was carried out for the first time under microwave irradiation, where reaction time was reduced from number of hours to minutes. The polyesters were obtained with molecular weight (Mw = 3084-6740 g/mol) and dispersity values (D = 1.18-1.92), when (salen)CrIII Cl/n-Bu4NCl was used as catalysts. While in case of DMAP as a co-catalyst, polyesters with improved molecular weight (Mw = 5537-6925 g/mol) and narrow dispersity values (D = 1.07-1.28) were obtained even at reduced concentrations of (salen)CrIII Cl and DMAP. The obtained products were characterized and evaluated by attenuated total reflection-fourier transform infrared spectroscopy (ATR-FTIR), proton nuclear magnetic resonance (1H-NMR) spectroscopy, gel permeation chromatography (GPC) and thermogravimetric analysis (TGA) Techniques.


Author(s):  
Sungyu Choi ◽  
Sang-Hun Shin ◽  
Dong-Hyun Lee ◽  
Gisu Doo ◽  
Dong Wook Lee ◽  
...  

Cerium oxide-containing interlocking interfacial layer improved mechanical adhesion and chemical stability of the interface. For the first time as a hydrocarbon-based membrane, it operated stably for more than 500 hours.


Marine Drugs ◽  
2020 ◽  
Vol 18 (12) ◽  
pp. 608
Author(s):  
Elena V. Girich ◽  
Anton N. Yurchenko ◽  
Olga F. Smetanina ◽  
Phan Thi Hoai Trinh ◽  
Ngo Thi Duy Ngoc ◽  
...  

Low molecular weight secondary metabolites of marine fungi Aspergillus flocculosus, Aspergillus terreus and Penicillium sp. from Van Phong and Nha Trang Bays (Vietnam) were studied and a number of polyketides, bis-indole quinones and terpenoids were isolated. The structures of the isolated compounds were determined by 1D and 2D NMR and HR-ESI-MS techniques. Stereochemistry of some compounds was established based on ECD data. A chemical structure of asterriquinone F (6) was thoroughly described for the first time. Anthraquinone (13) was firstly obtained from a natural source. Neuroprotective influences of the isolated compounds against 6-OHDA, paraquat and rotenone toxicity were investigated. 4-Hydroxyscytalone (1), 4-hydroxy-6-dehydroxyscytalone (2) and demethylcitreoviranol (3) have shown significant increasing of paraquat- and rotenone-treated Neuro-2a cell viability and anti-ROS activity.


Sign in / Sign up

Export Citation Format

Share Document