Analysis of Welding Technology about Bimetallic Clad Pipelines

2022 ◽  
Vol 905 ◽  
pp. 9-13
Author(s):  
Fu Shan Wang ◽  
Fa Gen Li ◽  
Ya Jun Li ◽  
Xue Qiang Mao ◽  
Bai Chun Liu ◽  
...  

Butt girth welding was a knotty problem for future application of bimetallic clad pipelines. At present, there were two kinds of problems: 1) To decide whether to use a variety of alloy welding procedure or to use corrosion resistant alloy full welding procedure; 2) After selecting the procedure, what kind of welding material should be equipped. In view of the above problems, taking 316L SS or 2205 DSS clad pipe as an example, welding process design and experimental analysis were conduted in this paper. Analysis of welding process from theory, standard and practice pointed out the control of welding hardness under different welding materials and procedure and directional suggestions of welding for bimetallic clad pipelines were provided. Futher the hardness distribution and CVN absorbed Energy test results of different welding processes showed welding quality could be guaranteed only when ENiCrMo-3 welding material was chosen for the whole weld.

2021 ◽  
Vol 39 (4) ◽  
pp. 1100-1107
Author(s):  
N.S. Akonyi ◽  
O.A. Olugboji ◽  
E.A.P. Egbe ◽  
O. Adedipe ◽  
S.A. Lawal

Girth welded replica of API X70M material have been produced on NG-GMAW welding technique. The particular area of interest is to develop suitable girth welding process parameter using NGGMAW. The major aim of the work was to replicate welds having tensile strength between 650 and 680 MPa. Design of Experiment (DoE) method by Taguchi design, using some selected welding processes was adopted. Two process parameters (factors) – arc voltage and wire feed rate, (the variables), and three levels were used. The resultant joint property on tensile strength of X70M pipeline was examined. The targeted mechanical property was achieved by selecting the best process parameters. Their effects on ultimate tensile strength – UTS was analysed using statistical technique – analysis of variance - ANOVA and Signal to Noise - S/N ratio with ‘thebigger-the–better’ value. Validation was done using MIDAS NFX (an FEA) mechanical engineering software. In conclusion, process parameters that affects or influences the girth welded properties of API X70M under field conditions were identified. Guidance for the specifications and selection of processes that could be used in field-welding for optimum performance has been recommended. Keywords: Optimization, Girth-Weld, Process Parameters, Tensile Strength, NG-GMAW


Author(s):  
Mohsen Mohammadijoo ◽  
Laurie Collins ◽  
Muhammad Rashid ◽  
Muhammad Arafin

Abstract Owing to recent concerns regarding pipeline field girth weld performance, particularly heat affected zone (HAZ) softening and toughness, EVRAZ North America has initiated a research program to evaluate the response of API grade line pipe to the current field girth welding practices. In particular, this study aims to elucidate the role of steel alloy design as well as the welding procedure on field girth weld and HAZ properties. This understanding is critical to balance the detrimental effects of HAZ softening on the overall joint strength against factors affecting HAZ toughness. A selection of several different steels with different levels of alloying elements, Ceq and Pcm have been subjected to welding trials to assess the effects of chemistry on joint performance. Furthermore, an analysis on the effect of welding process parameters on the joint properties has been made. The welds, fabricated via a manual shielded metal arc welding (M-SMAW) process, were evaluated in terms of toughness, local vs global strain distribution during tensile testing using digital image correlation (DIC) technique, and hardness contour mapping of the weld and HAZ regions. The results explicitly show that the extent of HAZ softening decreased as the amount of Mo, Mn, Ti/N and Ceq increased. However, this alloying addition resulted in a detrimental effect on the HAZ toughness, particularly towards the cap and fill passes. The HAZ softening increased as the inter-pass temperature and the welding heat input increased. In addition, the strain analysis confirmed the weld passes towards the root/hot passes are more prone to HAZ softening compared with the upper cap and fill passes.


2020 ◽  
pp. 12-18
Author(s):  
F.A. Urazbahtin ◽  
A.YU. Urazbahtina

A multifactor mathematical model of the welding process of products from aluminum-magnesium alloys, consisting of 71 indicators that assess the quality of the weld, the welding process, costs, equipment operation and quality of the welded material. The model can be used to control and optimize the welding process of products from aluminum-magnesium alloys. Keywords welding, products, aluminum-magnesium alloy, indicators, process parameters, welding equipment, welding materials, electrode sharpening, lining [email protected]


2021 ◽  
Vol 11 (12) ◽  
pp. 5728
Author(s):  
HyeonJeong You ◽  
Minjung Kang ◽  
Sung Yi ◽  
Soongkeun Hyun ◽  
Cheolhee Kim

High-strength steels are being increasingly employed in the automotive industry, requiring efficient welding processes. This study analyzed the materials and mechanical properties of high-strength automotive steels with strengths ranging from 590 MPa to 1500 MPa, subjected to friction stir welding (FSW), which is a solid-phase welding process. The high-strength steels were hardened by a high fraction of martensite, and the welds were composed of a recrystallized zone (RZ), a partially recrystallized zone (PRZ), a tempered zone (TZ), and an unaffected base metal (BM). The RZ exhibited a higher hardness than the BM and was fully martensitic when the BM strength was 980 MPa or higher. When the BM strength was 780 MPa or higher, the PRZ and TZ softened owing to tempered martensitic formation and were the fracture locations in the tensile test, whereas BM fracture occurred in the tensile test of the 590 MPa steel weld. The joint strength, determined by the hardness and width of the softened zone, increased and then saturated with an increase in the BM strength. From the results, we can conclude that the thermal history and size of the PRZ and TZ should be controlled to enhance the joint strength of automotive steels.


Author(s):  
Yan Zhang ◽  
DeShui Yu ◽  
JianPing Zhou ◽  
DaQian Sun ◽  
HongMei Li

Abstract To avoid the formation of Ti-Ni intermetallics in a joint, three laser welding processes for Ti alloy–NiTi alloy joints were introduced. Sample A was formed while a laser acted at the Ti alloy–NiTi alloy interface, and the joint fractured along the weld centre line immediately after welding without filler metal. Sample B was formed while the laser acted on a Cu interlayer. The average tensile strength of sample B was 216 MPa. Sample C was formed while the laser acted 1.2 mm on the Ti alloy side. The one-pass welding process involved the creation of a joint with one fusion weld and one diffusion weld separated by the remaining unmelted Ti alloy. The mechanical performance of sample C was determined by the diffusion weld formed at the Ti alloy–NiTi alloy interface with a tensile strength of 256 MPa.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 961-967
Author(s):  
Xiaomin Li ◽  
Jianrong Zhang

Abstract A quasi-static tensile test was performed on a 1.4 mm-thick TRIP780 steel strip with welding points. An MTS810 material test machine was used in the test, and a Split Hopkinson tension bar device was used in performing impact stretch loading at different strain rates. The dynamic tensile stress–strain curve of the spot welding material with different strain rates was obtained through the finely designed Hopkinson rod test, and the strain rate dependence of a TRIP780 steel spot welding material was discussed. According to the dynamic constitutive equation of the TRIP780 steel spot welding material, the test results were numerically simulated, the constitutive description and test curves were compared, and the simulation results and test results were discussed and analyzed. The fractures of the test recovery specimen were scanned with the scanning electron microscope, and the fracture mechanism of the TRIP780 steel spot welding material was explored by observing the fractures. The surfaces of the fractures surface showed obvious cleavage river patterns, and the evolution process of microcracks was determined and used in characterizing brittle fractures in specimen spot welding sample subjected to dynamic stretch loading.


Author(s):  
Pavel Layus ◽  
Paul Kah ◽  
Viktor Gezha

The Arctic region is expected to play an extremely prominent role in the future of the oil and gas industry as growing demand for natural resources leads to greater exploitation of a region that holds about 25% of the world’s oil and gas reserves. It has become clear that ensuring the necessary reliability of Arctic industrial structures is highly dependent on the welding processes used and the materials employed. The main challenge for welding in Arctic conditions is prevention of the formation of brittle fractures in the weld and base material. One mitigating solution to obtain sufficiently low-transition temperatures of the weld is use of a suitable welding process with properly selected parameters. This work provides a comprehensive review with experimental study of modified submerged arc welding processes used for Arctic applications, such as narrow gap welding, multi-wire welding, and welding with metal powder additions. Case studies covered in this article describe welding of Arctic steels such as X70 12.7-mm plate by multi-wire welding technique. Advanced submerged arc welding processes are compared in terms of deposition rate and welding process operational parameters, and the advantages and disadvantages of each process with respect to low-temperature environment applications are listed. This article contributes to the field by presenting a comprehensive state-of-the-art review and case studies of the most common submerged arc welding high deposition modifications. Each modification is reviewed in detail, facilitating understanding and assisting in correct selection of appropriate welding processes and process parameters.


2015 ◽  
Vol 809-810 ◽  
pp. 443-448 ◽  
Author(s):  
Tomasz Kik ◽  
Marek Slovacek ◽  
Jaromir Moravec ◽  
Mojmir Vanek

Simulation software based on a finite element method have significantly changed the possibilities of determining welding strains and stresses at early stages of product design and welding technology development. But the numerical simulation of welding processes is one of the more complicated issues in analyses carried out using the Finite Element Method. A welding process thermal cycle directly affects the thermal and mechanical behaviour of a structure during the process. High temperature and subsequent cooling of welded elements generate undesirable strains and stresses in the structure. Knowledge about the material behaviour subjected to the welding thermal cycle is most important to understand process phenomena and proper steering of the process. The study presented involved the SYSWELD software-based analysis of MIG welded butt joints made of 1.0 mm thickness, 5xxx series aluminium alloy sheets. The analysis of strains and the distribution of stresses were carried out for several different cases of fixing and releasing of welded elements.


2015 ◽  
Vol 1766 ◽  
pp. 29-35 ◽  
Author(s):  
G.Y. Pérez Medina ◽  
M. Padovani ◽  
M. Merlin ◽  
A.F. Miranda Pérez ◽  
F.A. Reyes Valdés

ABSTRACTGas tungsten arc welding-tungsten inert gas (GTAW-TIG) is focused in literature as an alternative choice for joining high strength low alloy steels; this study is performed to compare the differences between gas metal arc welding-metal inert gas (GMAW-MIG) and GTAW welding processes. The aim of this study is to characterize microstructure of dissimilar transformation induced plasticity steels (TRIP) and martensitic welded joints by GMAW and GTAW welding processes. It was found that GMAW process lead to relatively high hardness in the HAZ of TRIP steel, indicating that the resultant microstructure was martensite. In the fusion zone (FZ), a mixture of phases consisting of bainite, ferrite and small areas of martensite were present. Similar phase’s mixtures were found in FZ of GTAW process. The presence of these mixtures of phases did not result in mechanical degradation when the GTAW samples were tested in lap shear tensile testing as the fracture occurred in the heat affected zone. In order to achieve light weight these result are benefits which is applied an autogenous process, where it was shown that without additional weight the out coming welding resulted in a high quality bead with homogeneous mechanical properties and a ductile morphology on the fracture surface. Scanning electron microscopy (SEM) was employed to obtain information about the specimens that provided evidence of ductile morphology.


Author(s):  
Lan Ren ◽  
Kunnayut Eiamsa-ard ◽  
Jianzhong Ruan ◽  
Frank Liou

At present, part remanufacturing technology is gaining more interest from the military and industries due to the benefits of cost reduction as well as time and energy savings. This paper presents the research on one main component of part remanufacturing technology, which is part repairing. Traditionally, part repairing is done in the repair department using welding processes. However, the limitations of the traditional welding process are becoming more and more noticeable when accuracy and reliability are required. Part repairing strategies have been developed utilizing a hybrid manufacturing system in which the laser-aided deposition and CNC cutting processes are integrated. Part repairing software is developed in order to facilitate the users. The system and the software elevate the repairing process to the next level, in which accuracy, reliability, and efficiency can be achieved. The concept of the repairing process is presented in this paper, and verification and experimental results are also discussed.


Sign in / Sign up

Export Citation Format

Share Document