Hybrid Gelatin/Carboxymethyl Cellulose Hydrogel Loaded Copper (II) Ion for Medical Applications

2020 ◽  
Vol 1009 ◽  
pp. 3-8
Author(s):  
Narumol Kreua-Ongarjnukool ◽  
Saowapa Thumsing Niyomthai ◽  
Kodchaporn Sarodom ◽  
Thitithip Lothong ◽  
Nopparuj Soomherun

Antibacterial wound dressing has an important key in an infection in traumatic and surgical wounds. However, the antibacterial wound dressing is high cost and few domestic medical productions. The aim of this study is to prepare a wound dressing hydrogel from hybrid gelatin/carboxymethyl cellulose (Gel/CMC) hydrogel crosslinked with citric acid at different Gel: CMC ratios of 1:1, 1:2, 1:3, and 1:4 by solvent casting. The gel fractions and swelling of 6.0%w/v CuSO4 loading hybrid Gel/CMC hydrogel (Cu-Gel/CMC hydrogel) were a maximum of about 44% to 53% and 85% to 245%, respectively. The results showed that the 1:1 Gel: CMC of hydrogel produce was the most suitable condition due to its good gel fractions and swelling behavior. The cumulative Cu2+ release was a maximum of about 45% in 7 days. The hybrid Cu-Gel/CMC hydrogel showed the zone of inhibition of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) about 16 mm and 19 mm, sequentially. The research provided that the hybrid Cu-Gel/CMC hydrogel has the potential to use in medical applications.

RSC Advances ◽  
2015 ◽  
Vol 5 (125) ◽  
pp. 103036-103046 ◽  
Author(s):  
Ali Hebeish ◽  
S. Sharaf

Graft copolymerization of DADMAC with a MBA crosslinking agent was achieved on water soluble carboxymethyl cellulose with an APS initiator. A CuO nanocomposite hydrogel was formed in situ on cotton. The synthesis of Ag/CMC-DADMAC hydrogel nanocomposites was also studied.


Author(s):  
E. Vijaya Sekhar ◽  
Subhas S. Karki ◽  
Javarappa Rangaswamy ◽  
Mahesh Bhat ◽  
Sujeet Kumar

Abstract Background Sulfonamides (sulfa drugs) and the metals like mercury, copper, and silver bear antimicrobial properties. The discovery of broad-spectrum antibiotics such as penicillins, cephalosporins, and fluoroquinolones has reduced their use. However, in some instances these drugs are the first-line treatment. The metal-based sulfonamide (e.g., silver sulfadiazine) is considered as first choice treatment in post-burn therapy while the use of silver nanoparticle-cephalexin conjugate to cure Escherichia coli infection explains the synergistic effect of sulfa drugs and their metal conjugates. With growing interest in metal-based sulfonamides and the Schiff base chemistry, it was decided to synthesize sulfonamide Schiff base metal complexes as antioxidant and antimicrobial agent. Results The Fe (III), Ru (III), Co (II), Ni (II), Cu (II), Pd (II), Zn (II), Cd (II), and Hg (II) metal complexes of 4-((thiophen-2-ylmethylene)-amino)-benzenesulfonamide (TMABS) were prepared and studied for thermal stability, geometry, and other electronic properties. The ligand TMABS (Schiff base) and its metal complexes were screened in-vitro for 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging and antimicrobial properties against Gram-positive (+ve) Bacillus subtilis (MTCC-441), Staphylococcus aureus (MTCC 7443), Gram-negative (-ve) Escherichia coli (MTCC 40), Salmonella typhi (MTCC 3231), and fungal strains Aspergillus niger (MTCC-1344) and Penicillium rubrum by agar well diffusion method. Results summarized in Tables 3, 4, and 5 represent the inhibitory concentration (IC50) in micromole (μM). The zone of inhibition (ZI) in millimeter (mm) represents antimicrobial properties of TMABS and its metal complexes. Conclusions The synthesized sulfanilamide Schiff base (TMABS) behaved as a neutral and bidentate ligand coordinating with metal ions through its azomethine nitrogen and thiophene sulfur to give complexes with coordination number of 4 and 6 (Fig. 3). The nucleophilic addition of sulfanilamide amino group (–NH2) group to carbonyl carbon (>C=O) of benzaldehyde gave sulfanilamide Schiff base (imine) (Fig. 2). All the metal complexes were colored and stable at room temperature. With IC50 of 9.5 ± 0.1 and 10.0 ± 0.7 μM, the Co, Cu, and Pd complexes appeared better antioxidant than the ligand TMABS (155.3±0.1 μM). The zone of inhibition (ZI) of Hg (28 mm) and Ru complexes (20 mm) were similar to the ligand TMABS (20 mm) against Aspergillus niger (MTCC-1344) as in Figs. 4, 5, and 6. None of the synthesized derivatives had shown better antimicrobial properties than the standard streptomycin sulfate and fluconazole.


2019 ◽  
Vol 948 ◽  
pp. 175-180 ◽  
Author(s):  
Indriana Kartini ◽  
Kukuh Handaru Iskandar ◽  
Chotimah ◽  
Eko Sri Kunarti ◽  
Rochmadi

Bioplastic composites based on carboxymethyl cellulose (CMC) and urea have been successfully synthesised at various amount of zeolites. Urea inclusion into the bioplastics was supposed to result in nitrogen slow-release composites. The bioplastic composites were prepared by solvent casting the precursor gel containing 0.5 % (w/w) urea in CMC in the petri dishes. The zeolites content was varied at 0.1, 0.5, 1.0, 2.0, and 3.0 % (w/w to CMC). It showed that the addition of zeolites to the bioplastic composites up to 0.5% increased their tensile strength. More addition of zeolites decreased the strain of the bioplastic composite. It could be due to the formation of hydrogen bonds between CMC and zeolites. The amount of urea absorbed in the bioplastics increased as the amount of zeolites increases. It is possibly to be due to the strong interaction between urea and zeolites. The ammonium ions may interact with interchangeable cations in the zeolite. This interaction will also extend the time for the bioplastics to biodegrade. The presence of zeolites in the CMC polymer chains is useful to give nitrogen slow-release composites.


2021 ◽  
pp. 110744
Author(s):  
Asmaa Ahmed Arafa ◽  
Ahmed Ali Nada ◽  
Abeer Yousry Ibrahim ◽  
Magdy Kandil Zahran ◽  
Osama A. Hakeim

2018 ◽  
Vol 7 (4) ◽  
pp. 392-398
Author(s):  
B.T Yunana ◽  
◽  
B. B Bukar ◽  
J. C Aguiyi ◽  
◽  
...  

The ethanol extracts of root, bark and leaf of Bridelia ferruginea was investigated for antibacterial activity against clinical isolate of Staphylococcus aureus and Escherichia coli. The extracts had significant antibacterial activity in vitro at concentration of 25 mg/ml, 50 mg/ml, 100 mg/ml and 200 mg/ml and in vivo at dose of 50 mg/kg and 100 mg/kg. The root extract in vitro had the highest zone of inhibition, followed by the bark extract for both Staphylococcus aureus and Escherichia coli. The concentration of 200 mg/ml had the highest zone of inhibition in vitro. The minimum inhibitory concentration (MIC) showed a decreasing inhibitory effect of the plant extracts for both Staphylococcus aureus and Escherichia coli as the concentration decreases with root having 3.125 mg/ml, bark having 6.25 mg/ml and leaf having 25 mg/ml for Staphylococcus aureus and Escherichia coli. Likewise, the minimum bactericidal concentration (MBC) showed decreasing bactericide effects with decrease concentration with root having 12.5 mg/ml, bark having 12.5 mg/ml and leaf having 25 mg/ml for Escherichia coli while root had 6.25mg/ml, bark had 12.5mg/ml and leaf had 25mg/ml for Staphylococcus aureus. The in vivo investigation showed that the root and bark extract exhibited antibacterial activity on both Staphylococcus aureus and Escherichia coli at doses of 100mg/kg and 50mg/kg; the root extract had higher activity than the bark and root/bark combined. The dose of 100 mg/kg had the highest colonies reduction for Staphylococcus aureus and Escherichia coli in vivo. Preliminary phytochemical screening of root, bark and leaves of Bridelia ferruginea revealed the presence of tannins, flavonoids, carbohydrates, cardiac glycoside (root, bark and leaves), saponins (root and bark). The presence of tannins, saponins, flavonoid, cardiac glycoside and carbohydrate in the bark and root extracts of the plant indicates that the bark and root extracts were pharmacological importance


Author(s):  
P Danish ◽  
Q Ali ◽  
MM Hafeez ◽  
A Malik

Aloe vera is a well-known medicinal plant used in many therapeutic purposes. Naturally it is composed of many useful compounds that have ability to use for treatment of many diseases. The active compounds reported in this plant are saponins, sugar, enzymes, vitamins, aloesin, aloeemodin, aloin, acemannan aloemannan, aloeride, methylchromones, flavonoids, naftoquinones, sterols, minerals, anthraquinones, amino acids, lignin and salicylic acid and other different compounds including fat-soluble and water-soluble vitamins, enzymes, minerals, simple/complex sugars, organic acid and phenolic compounds. In this study aloe vera is used for antibacterial and antifulgal activity against different strains of bacteria and pathogenic fungal strains. Ethanol extract of Aloe vera leaves and roots is applied on these bacterial and fungal strains in different concentrations (15, 20, 25, 30µl). Bacillus cereus, Bacillus subtitis, Bacillus megaterium, Streptococcus pyogenes, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, and some other bacterial strains are used for this study. Escherichia coli and Agrobacterium tumefacins shows zone of inhibition around 18mm which consider as good result. Bacillus subtitis and Bacillus megaterium also shows good result around 16mm. Proteus mirabilis and Pseudomonas aeruginosa shows minimum zone of inhibition which is around 11mm. among all used fungal strains (fuserium oxysporum, Candida albicans, Aspergillus fumigatus, Aspergillus niger) fuserium oxysporum and Aspergillus niger shows excellent results around 19mm both against root extract and leaves extract.


2021 ◽  
pp. 77-79
Author(s):  
Janardhan Namdeo Nehul

Scytonema schmidtii,a cyanobacterium was isolated from the collected soil samples from different locations of Ahmednagar district of Maharashtra state (India). Identification was carried out using morphological variation and taxonomical approaches according to Desikachary (1959) and Prescott (1962) .The axenic culture of Scytonema schmidtii was obtained by using the method recommended by Bolch and Blackburn (1996). The isolated Scytonema schmidtii was grown autotropically in BG-11 medium as described by Rippka et al.,(1979) and incubated at 30±2°c.After 25 days, biomass was harvested by filtration through double layered muslin cloth and dried using air blower. The biomass of this Scytonema schmidtii species was used for the assessment of antibacterial activity against Escherichia coli, Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Micrococcus flavus and Proteus mirabilis. The antibacterial activity was studied by disc diffusion method (Anonymous,1996).Methanol extract of Scytonema schmidtii showed the activity against all the tested bacterial strains.Maximum zone of inhibition (23±1.9 mm) was recorded with methanol extract of Scytonema schmidtii.


2020 ◽  
Vol 16 (2) ◽  
pp. 73
Author(s):  
Nurhafizah Rafiani ◽  
Renny Aditya ◽  
Noor Muthmainah

Abstract: A cesarean delivery increases the risk of wound infection it should be prevented by using antibiotics. This study was to determine the pattern of bacterial sensitivity in surgical wounds of cesarean section patients for selected antibiotics, i.e ceftriaxone, cefixime, sulbactam ampicillin, ciprofloxacin, clindamycin and gentamicin.This observational study was conducted at the Ulin Public Hospital in Banjarmasin from July to September 2019. Using a cross sectional approach Samples of bacteria were identidied from 36 that were pusposively sampled, i.e., Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli. Antibiotic sensitivity test showed that Staphylococcus aureus was sensitive against gentamicin (100%),whereas Staphylococcus epidermidis and Escherichia coli. Were intermediately sensitive towards gentamicin (62.5%) and ceftriaxone (80%) Keywords: Antibiotic susceptibility, caesarean section, surgical wound


Sign in / Sign up

Export Citation Format

Share Document