Effect of Sintering Temperature on Properties of Setiu Clay Sediments

2020 ◽  
Vol 1010 ◽  
pp. 206-210
Author(s):  
Mohd Al Amin Muhamad Nor ◽  
Noor Asliza Ismail Adnen ◽  
Mohamad Zaky Noh ◽  
A.R.M. Warikh ◽  
Julie Juliewatty Mohamed

The effect of sintering temperature on physical properties of Setiu clay sediment was studied. The ceramic samples were prepared via slip casting method, and sintered at different temperatures ranging from 900 to 1100°C, with 2 hours soaking time. Morphologies of ceramic samples were characterized using Tabletop Microscope. Shrinkage was determined from measurement of samples before and after sintering process. A good ceramic sample without warping or cracks obtained after casting process and after sintered at different temperatures. The results show that sintering temperatures greatly influence morphology of samples. As sintering temperature increased the grain boundaries between particles become smoother and compacted while pores shrunk due to the densification behavior. A considerable increased in shrinkage from 5 to 20% were observed with increasing temperature from 900 to 1100°C. As conclusion, Setiu clay sediment are suitable for production ceramic products and 1000°C can be consider the best sintering temperature in terms of quality of products and production costs.

Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Guanghui Jiang ◽  
Jianping Zuo ◽  
Teng Ma ◽  
Xu Wei

Understanding the change of permeability of rocks before and after heating is of great significance for exploitation of hydrocarbon resources and disposal of nuclear waste. The rock permeability under high temperature cannot be measured with most of the existing methods. In this paper, quality, wave velocity, and permeability of granite specimen from Maluanshan tunnel are measured after high temperature processing. Quality and wave velocity of granite decrease and permeability of granite increases with increasing temperature. Using porosity as the medium, a new wave velocity-permeability model is established with modified wave velocity-porosity formula and Kozeny-Carman formula. Under some given wave velocities and corresponding permeabilities through experiment, the permeabilities at different temperatures and wave velocities can be obtained. By comparing the experimental and the theoretical results, the proposed formulas are verified. In addition, a sensitivity analysis is performed to examine the effect of particle size, wave velocities in rock matrix, and pore fluid on permeability: permeability increases with increasing particle size, wave velocities in rock matrix, and pore fluid; the higher the rock wave velocity, the lower the effect of wave velocities in rock matrix and pore fluid on permeability.


2014 ◽  
Vol 974 ◽  
pp. 157-161
Author(s):  
Masturah Mohamed ◽  
Mahesh Talari ◽  
Mohd Salleh Mohd Deni ◽  
Azlan Zakaria

CaCu3Ti4O12(CCTO) is well known to have colossal dielectric constant in the range of 105.It is widely accepted that this phenomenon may be attributed to internal layer barrier capacitance (IBLC) model. The dielectric properties of CCTO were reported to be strongly dependent on the processing conditions and grain size. In this work, CCTO samples with different grain sizes were produced by varying sintering temperature in order to investigate IBLC effect on dielectric properties of CCTO. The samples were sintered at four different temperatures, (T=1100°C, 1050°C, 1000°C and 950°C). Dielectric measurements were carried out for the samples in the frequency range of 102– 106Hz using impedance spectrometer. Electron micrographs showed that increasing temperature promoted the grain growth of CCTO while sintering. The internal crystalline defects are seen to play major role by increasing the grain conductivity in dipole formation and increased the dielectric constant of the samples.


2006 ◽  
Vol 3 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Vincent A. C. Haanappel ◽  
Josef Mertens ◽  
Andreas Mai

Targets in the development of anode-supported or planar solid oxide fuel cells (SOFCs) are low operation temperatures, high durability, high reliability, high power density, and low production costs. During the past ten years steps have already been taken at Forschungszentrum Jülich to lower the operating temperatures while maintaining the power output. This was achieved by optimizing processing and microstructural parameters of the electrodes. This paper presents the latest results concerning performance improvement through variations of the processing route and the microstructure of La0.65Sr0.3MnO3 (LSM) and La0.58Sr0.4Co0.2Fe0.8O3−δ (LSCF)-type SOFCs. In the case of the LSM-type single cells, the following aspects relating to the electrochemical performance were investigated in more detail: (1) production of the anode substrate by tape casting versus warm pressing; (2) deposition of the anode functional layer (AFL) and electrolyte by screen printing versus vacuum slip casting; (3) use of noncalcined and non-ground YSZ for applying the cathode functional layer (CFL); and (4) sintering temperature of the CFL and cathode current collector layer (CCCL). In the case of LSCF-type cells, a systematic approach was initiated for optimizing the Ce0.8Gd0.2O2−δ (CGO) diffusion barrier layer: (1) deposition techniques of the CGO layer and (2) sintering temperature of the screen-printed CGO layer. Results have shown that certain modifications of the processing route led to a slightly lower electrochemical performance, whereas others did not affect the performance at all. Regarding LSCF-type SOFCs, a slight improvement of the performance was achieved by optimizing the sintering temperature of the CGO layer.


2010 ◽  
Vol 434-435 ◽  
pp. 404-408 ◽  
Author(s):  
Li Fu ◽  
Jing Feng Li

LaCoO3 ceramics were prepared by conventional solid state reaction and normal sintering at the temperatures ranging from 1373 to 1523 K. The sintered densities increased with increasing sintering temperature and exceeded 90 % of the theoretical values when sintered above 1473 K. The thermoelectric properties of the samples sintered at different temperatures were investigated from 323 to 673 K. The LaCoO3 samples showed a negative Seebeck coefficient, whose absolute values decreased dramatically with increasing temperature in the range of 323 to 460 K, then changed to a positive value and lightly decreased above 460 K. The electrical conductivity increased with increasing temperature, indicating a semiconducting behavior. The Seebeck coefficients showed little difference between the samples sintered at different temperatures, but the power factor of the sample sintered at a higher temperature was larger because of the higher electrical conductivity.


2012 ◽  
Vol 622-623 ◽  
pp. 215-219 ◽  
Author(s):  
Noor Faeizah Amat ◽  
Andanastuti Muchtar ◽  
Norziha Yahaya ◽  
Mariyam Jameelah Ghazali

The effects of a polyelectrolyte dispersant agent, polyethyleneimine (PEI), on the rheology of zirconia 3Y-TZP suspensions and the densification characteristics of sintered zirconia were investigated. The colloidal processing technique was used to minimize the agglomeration of nanoparticles during the fabrication of the samples. Five batches of 10% zirconia suspensions containing different amounts of PEI at 0.3, 0.4, 0.5, 0.6, and 0.7 wt% were prepared. The rheological properties of the zirconia suspensions were determined using a rotational viscometer. The optimum amount of PEI that can maximize powders dispersion was determined. The green samples were then prepared using the slip casting process. The samples were densely sintered at a final sintering temperature of 1300 °C. The result revealed that the zirconia suspension with 0.5 wt% PEI was the most optimum amount to obtain a well-dispersed suspension. The sintered density of zirconia 3Y-TZP reached its maximum by adding 0.5 wt% PEI.


2007 ◽  
Vol 539-543 ◽  
pp. 716-719 ◽  
Author(s):  
Kazuhiko Iwai ◽  
Jun Akiyama ◽  
Tomohiko Tanase ◽  
Shigeo Asai

Formation of crystallographically orientaed hydroxyapatite (HAp) is one of the promising ways to utilize their anisotropic nature of chemical and biological properties. On the other hand, the development of super conducting magnet technology enables to introduce a high magnetic field which can control crystal orientation of non-magnetic materials with magnetic anisotropy. In this study, a high magnetic field and sample rotation are simultaneously imposed on the hydroxyapatite during a slip casting process in order to align its c-plane within a horizontal plane. From X-ray diffraction, it has been found that the HAp crystals in the sample treated with the magnetic field and the sample rotation were oriented to a particular direction in the slip casting process and it was enhanced by the subsequent sintering process, while the c-axis crystal orientation of the sample treated without the magnetic field and with the sample rotation was not observed before and after the sintering.


2008 ◽  
Vol 584-586 ◽  
pp. 741-747 ◽  
Author(s):  
Aferdita Vevecka-Priftaj ◽  
Andreas Böhner ◽  
Johannes May ◽  
Heinz Werner Höppel ◽  
Matthias Göken

The strain rate sensitivity of the aluminium alloy AA6061 has been investigated in a conventional grain sized (CG) state and in two different ultrafine grained (UFG) conditions processed by Equal Channel Angular Pressing (ECAP) for 2 and 6 passes at 100o C. Strain rate jump tests in compression were performed at different temperatures and the strain-rate sensitivity exponent m was determined. The tests were accomplished by microstructural investigations before and after compression testing in CG and UFG conditions. It is shown that all UFG microstructures exhibit strongly increased strain-rate sensitivity (SRS) compared to the CG state. The SRS increases with increasing temperature and is more pronounced for the UFG material processed using 6 ECAP passes. The microstructural investigations show a rather high stability of the grain structure for the UFG conditions up to 250o C. The results are discussed with respect to the relevant deformation mechanisms.


Author(s):  
Valentina A. ZIMINA ◽  

This paper aims to investigate the internal structure and to evaluate the elastic and strength characteristics of the corundum ceramic samples sintered at different temperatures. The average value of porosity of the sintered samples at the temperatures of 1400, 1500, and 1600 °C is 33, 26, and 17%, respectively. Mechanical tests of the ceramic samples are performed using the threepoint bending method. The ultimate bending strength varies from 135 to 265 MPa in the studied sintering temperature range. The elastic moduli of the sintered samples are found to be in the range of 58 – 113 GPa. An analysis of the ceramic samples’ microstructure is performed using a scanning electron microscope. The dependence of the porosity, pore size, and grain size on the sintering temperature is indicated. The values of strength and elastic modulus of the samples increase nonlinearly with rising sintering temperature in the experiment. Statistical behavior of mechanical properties of the ceramic samples is described using the Weibull analysis. The strength data for the sintering temperatures of 1500 and 1600 °C are well described by the Weibull distribution, and the strength values for a sintering temperature of 1400 °C are described with a significant scatter.


2021 ◽  
Vol 52 (5) ◽  
pp. 1699-1713 ◽  
Author(s):  
Krystian Zyguła ◽  
Marek Wojtaszek ◽  
Tomasz Śleboda ◽  
Sebastian Lech ◽  
Oleksandr Lypchanskyi ◽  
...  

AbstractThe influence of the induction sintering process at different temperatures on the behavior of the powder metallurgy Ti-5Al-5Mo-5V-3Cr alloy was investigated. Material for the research was produced by elemental powder blending, followed by the uniaxial cold compacting process. Powder compacts were induction heated and sintered within the temperature range of 1000 °C to 1300 °C. The influences of process parameters on the material behavior during sintering and its properties were studied. The microstructure examination was performed with particular attention to the pore size and distribution as well as the homogenization of the microstructure. The sintering temperature of 1200 °C proved to be critical for the dissolution of most alloying powder particles. Hot compression tests were performed to determine the formability of the obtained material. Significant differences in flow stress behavior between samples sintered at temperatures below and above 1200 °C were observed. The mechanical properties of the material before and after deformation were compared. The evolution of the microstructure of sintered Ti-5Al-5Mo-5V-3Cr alloy after hot deformation was analyzed with an emphasis on its influence on the material properties. Based on the conducted research, it was found that the adequate homogenization of the chemical composition and microstructure was achieved at the temperature of 1250 °C, and a further increase did not reflect in a significant improvement.


2017 ◽  
Vol 6 (1) ◽  
Author(s):  
B. Darunee ◽  
B. Tripob

Porous alumina membranes were prepared from alumina matrix, polyvinyl alcohol binder (1–5%) and calcium carbonate additive (0–3%). The disc–shaped alumina samples were fabricated by slip casting process. The alumina paste was sintered at different temperatures of 1100, 1200, 1300 and 1400°C. The results showed that the porosity of the porous membrane reached 45%–46% at 1300°C sintering for the mixtures of alumina matrix with 3% PVA and alumina matrix with 2% CaCO3 plus 3% PVA. The water permeability was 150 L/m2.h at 20 kPa and the hydraulic conductivity coefficient was 1.06 × 10–9 – 2.43 × 10–9 ms–1Pa–1. The density, linear shrinkage water absorption and mechanical strength were ca. 3.92 g/cm3, 1.61–1.71% and 20.45–21.92%, 17.26–21 MPa, respectively. The SEM micrographs of alumina membrane using PVA binder showed a dense surface layers. An increase of the PVA binder resulted in a higher pure water fluxes and bigger pore sizes. An increase of CaCO3 in a 3% PVA binder mixtures resulted in a little decrease of porosity but increase in linear shrinkage from 1.57 to 2.04% at 1300°C sintering.


Sign in / Sign up

Export Citation Format

Share Document