Manufacturing and Characterization of Open-Cell Aluminum Foam Produced via Infiltration of Leachable Space Holder

2021 ◽  
Vol 1041 ◽  
pp. 57-65
Author(s):  
Ziad El Sayed ◽  
Mohamed Abd-Alrazzaq ◽  
Islam El-Galy

Open-cell Al-Si foam samples were produced using infiltration casting technique. The metal infiltration process was performed in a specially designed and built setup consisting of a vertical chamber resistance furnace, a pressurization chamber connected to an Argon gas cylinder through a control manifold. To control the relative density of the produced foams, non-compacted and compacted preforms (5 MPa) were prepared from 2 or 4 mm NaCl particles. The compaction was performed using a hydraulic press in the same infiltration chamber. Argon pressure of 3 bars was applied to infiltrate the preforms with the aluminum alloy after melting at 750 °C. The produced aluminum foam specimens show no lack of filling, a high degree of preform replication, and good homogeneity of pore sizes. The preliminary physical and mechanical characterization tests, including relative density, plateau stress, densification strain, and elastic modulus of the foam, are comparable to the values reported in previous investigations, in which more complicated, time-consuming, higher energy, and costly techniques were used. Further investigations on wider ranges of particle sizes, compaction, and infiltration pressures are currently in progress.

Author(s):  
Satish Sharma ◽  
Nassif E. Rayess ◽  
Nihad Dukhan

The damping and basic dynamic properties of a novel type of multifunctional hybrid material known as Metal Foam-Polymer Composite are investigated. This material is obtained by injection molding a thermoplastic polymer through an open cell Aluminum Foam, in essence creating two contiguous morphologies; an Aluminum Foam interconnected “skeleton” with the open pores filled with a similarly interconnected polymer substructure. This coexistence of both materials allows each to contribute its salient properties (e.g. the plastics contributing surface toughness and the metal foams contributing thermal stability). Basic damping testing results are presented for various Aluminum Foam porosities and pore sizes as well as for three types of polymers. A basic mathematical model of the damping is also presented. The integrity of the interface between the Aluminum Foam and the Polymer is discussed in terms of its effect on the overall material damping.


2018 ◽  
Vol 115 (5) ◽  
pp. 509 ◽  
Author(s):  
Samsudin Fitri Aida ◽  
Mirsad Nur Hijrah ◽  
Amirah Ahmad Hamdi ◽  
Hussain Zuhailawati ◽  
Abu Seman Anasyida

Gravity die casting and squeeze casting are the techniques used for the fabrication of hypoeutectic open-cell Al-Si foams which are characterized and studied for their energy absorbing quality in compression tests. The effect of different amounts of sodium chloride (NaCl) (up to 56 vol.%) as a space holder in the casting of aluminum foam on the morphology, density, porosity, compressive and energy absorption properties of aluminum foam was studied. The hypoeutectic Al-Si alloy with NaCl particles as a space holder was used to fabricate the aluminum foam using gravity die casting and squeeze casting. The hypoeutectic open-cell Al-Si foams produced by squeeze casting showed smaller pore size, better pore distribution, higher porosity, good compressive strength and greater energy absorption energy compared to that of gravity die casting. The hypoeutectic open-cell Al-Si foams with 44 vol.% NaCl using squeeze casting showed the best properties among all foams due to its moderate and well-distributed porosity.


2002 ◽  
Vol 17 (3) ◽  
pp. 625-631 ◽  
Author(s):  
K. P. Dharmasena ◽  
H. N. G. Wadley

Cellular metal foams are of interest because of the ability to tailor their mechanical, thermal, acoustic, and electrical properties by varying the relative density and cell morphology. Here, a tetrakaidecahedral unit-cell approach is used to represent an open-cell aluminum foam and a simplified electrical resistor network derived to model low frequency current flow through the foam. The analysis indicates that for the range of relative densities studied (4–12%), the conductivity of tetrakaidecahedral foams has a linear dependence upon relative density. The distribution of metal in the cell ligaments was found to significantly affect the conductivity. Increasing the fraction of metal at the ends of the ligaments resulted in a decrease in electrical conductivity at a fixed relative density. Low frequency electrical conductivity measurements of an open-cell aluminum foam (ERG Duocel) confirmed the linear dependence upon density, but the slope was smaller than that predicted by the unit-cell model. The difference between the model and experiment was found to be the result of the presence of a distribution of cell sizes and types in real samples. This effect is due to the varying number of ligaments, ligament lengths, and the cross-sectional areas available for current conduction across the cellular structure.


Author(s):  
Kemining W. Yeh ◽  
Richard S. Muller ◽  
Wei-Kuo Wu ◽  
Jack Washburn

Considerable and continuing interest has been shown in the thin film transducer fabrication for surface acoustic waves (SAW) in the past few years. Due to the high degree of miniaturization, compatibility with silicon integrated circuit technology, simplicity and ease of design, this new technology has played an important role in the design of new devices for communications and signal processing. Among the commonly used piezoelectric thin films, ZnO generally yields superior electromechanical properties and is expected to play a leading role in the development of SAW devices.


2021 ◽  
pp. 002199832110055
Author(s):  
Zeeshan Ahmad ◽  
Sabah Khan

Alumnium alloy LM 25 based composites reinforced with boron carbide at different weight fractions of 4%, 8%, and 12% were fabricated by stir casting technique. The microstructures and morphology of the fabricated composites were studied by scanning electron microscopy and energy dispersive spectroscopy. Elemental mapping of all fabricated composites were done to demonstrate the elements present in the matrix and fabricated composites. The results of microstructural analyses reveal homogenous dispersion of reinforcement particles in the matrix with some little amount of clustering found in composites reinforced with 12% wt. of boron carbide. The mechanical characterization is done for both alloy LM 25 and all fabricated composites based on hardness and tensile strength. The hardness increased from 13.6% to 21.31% and tensile strength 6.4% to 22.8% as reinforcement percentage of boron carbide particles increased from 0% to 12% wt. A fractured surface mapping was also done for all composites.


2021 ◽  
Vol 9 (3) ◽  
pp. 659
Author(s):  
Elias Asimakis ◽  
Panagiota Stathopoulou ◽  
Apostolis Sapounas ◽  
Kanjana Khaeso ◽  
Costas Batargias ◽  
...  

Various factors, including the insect host, diet, and surrounding ecosystem can shape the structure of the bacterial communities of insects. We have employed next generation, high-throughput sequencing of the 16S rRNA to characterize the bacteriome of wild Zeugodacus (Bactrocera) cucurbitae (Coquillett) flies from three regions of Bangladesh. The tested populations developed distinct bacterial communities with differences in bacterial composition, suggesting that geography has an impact on the fly bacteriome. The dominant bacteria belonged to the families Enterobacteriaceae, Dysgomonadaceae and Orbaceae, with the genera Dysgonomonas, Orbus and Citrobacter showing the highest relative abundance across populations. Network analysis indicated variable interactions between operational taxonomic units (OTUs), with cases of mutual exclusion and copresence. Certain bacterial genera with high relative abundance were also characterized by a high degree of interactions. Interestingly, genera with a low relative abundance like Shimwellia, Gilliamella, and Chishuiella were among those that showed abundant interactions, suggesting that they are also important components of the bacterial community. Such knowledge could help us identify ideal wild populations for domestication in the context of the sterile insect technique or similar biotechnological methods. Further characterization of this bacterial diversity with transcriptomic and metabolic approaches, could also reveal their specific role in Z. cucurbitae physiology.


2021 ◽  
Vol 22 (9) ◽  
pp. 4707
Author(s):  
Mariana Lopes ◽  
Sandra Louzada ◽  
Margarida Gama-Carvalho ◽  
Raquel Chaves

(Peri)centromeric repetitive sequences and, more specifically, satellite DNA (satDNA) sequences, constitute a major human genomic component. SatDNA sequences can vary on a large number of features, including nucleotide composition, complexity, and abundance. Several satDNA families have been identified and characterized in the human genome through time, albeit at different speeds. Human satDNA families present a high degree of sub-variability, leading to the definition of various subfamilies with different organization and clustered localization. Evolution of satDNA analysis has enabled the progressive characterization of satDNA features. Despite recent advances in the sequencing of centromeric arrays, comprehensive genomic studies to assess their variability are still required to provide accurate and proportional representation of satDNA (peri)centromeric/acrocentric short arm sequences. Approaches combining multiple techniques have been successfully applied and seem to be the path to follow for generating integrated knowledge in the promising field of human satDNA biology.


2018 ◽  
Vol 115 (17) ◽  
pp. E3969-E3977 ◽  
Author(s):  
Sasikumar Rajoo ◽  
Pascal Vallotton ◽  
Evgeny Onischenko ◽  
Karsten Weis

The nuclear pore complex (NPC) is an eightfold symmetrical channel providing selective transport of biomolecules across the nuclear envelope. Each NPC consists of ∼30 different nuclear pore proteins (Nups) all present in multiple copies per NPC. Significant progress has recently been made in the characterization of the vertebrate NPC structure. However, because of the estimated size differences between the vertebrate and yeast NPC, it has been unclear whether the NPC architecture is conserved between species. Here, we have developed a quantitative image analysis pipeline, termed nuclear rim intensity measurement (NuRIM), to precisely determine copy numbers for almost all Nups within native NPCs of budding yeast cells. Our analysis demonstrates that the majority of yeast Nups are present at most in 16 copies per NPC. This reveals a dramatic difference to the stoichiometry determined for the human NPC, suggesting that despite a high degree of individual Nup conservation, the yeast and human NPC architecture is significantly different. Furthermore, using NuRIM, we examined the effects of mutations on NPC stoichiometry. We demonstrate for two paralog pairs of key scaffold Nups, Nup170/Nup157 and Nup192/Nup188, that their altered expression leads to significant changes in the NPC stoichiometry inducing either voids in the NPC structure or substitution of one paralog by the other. Thus, our results not only provide accurate stoichiometry information for the intact yeast NPC but also reveal an intriguing compositional plasticity of the NPC architecture, which may explain how differences in NPC composition could arise in the course of evolution.


Sign in / Sign up

Export Citation Format

Share Document