Investigation of the Primary Recrystallisation Microstructure of Cold Rolled and Annealed Fe 3% Si Single Crystals with Goss Orientation

2004 ◽  
Vol 467-470 ◽  
pp. 129-134 ◽  
Author(s):  
Dorothée Dorner ◽  
Ludger Lahn ◽  
Stefan Zaefferer

A silicon steel single crystal with {110}<001> Goss orientation was cold rolled up to 89 % thickness reduction and subsequently annealed. The evolution of the macroscopic cold rolling texture was investigated by x-ray diffraction. Local orientation relationships and the microstructure around and within Goss grains of deformed and annealed samples were analysed using the electron backscatter diffraction (EBSD) technique. During cold rolling a texture consisting of two strong {111}<112> components and a minor {110}<001> Goss component develops. After primary recrystallisation the texture is characterized by a strong Goss component. Goss-oriented grains that remain after high deformation are considered to be the origin for the primary recrystallisation texture.

2007 ◽  
Vol 546-549 ◽  
pp. 1033-1036
Author(s):  
Qi Ping Hu ◽  
Yong Zhang ◽  
Yun Lai Deng

Deformation microstructures and micro-orientations of columnar grains with different orientations in a polycrystalline high purity Al cold-rolled up to 65% (thickness reduction) were investigated using electron backscatter diffraction (EBSD) technique. It was found that rotations were Inhomogeneous within the individual grains, the rotation angles of the parts close to the initial boundaries (BPs) were smaller than those remote from the boundaries (IPs), e.g. the deviation angles between the BPs and the IPs were 5-6° in the grains with <001>//RD orientation, leading to the rotation along the α-fiber, while the deviation angles were 5-12° in the grains with <121>//ND orientation rotating toward the β-fiber. These results demonstrated that the microstructures and local rotations of various parts within the rolled individual columnar grains were influenced by their initial orientations and boundaries.


2007 ◽  
Vol 558-559 ◽  
pp. 149-152
Author(s):  
H.S. Chen ◽  
Andrew Godfrey ◽  
Niels Hansen ◽  
Qing Liu

The effect of crystal orientation on the recovery and recrystallization of cold-rolled Ni (99.96% purity) has been investigated. Particular attention was paid to the annealing response of regions with either the Copper (C), Brass (B) or S rolling texture orientations. Samples with an initial average grain size of approx. 500μm were deformed to strains of up to εvM = 4.5. As a result of the large initial grain size, even after high rolling reductions it is possible to find sufficiently large regions of material with similar crystal orientation to analyze the recovery and recrystallization behaviour as a function of crystal orientation. Microstructural investigations were carried out in the scanning electron microscope using both electron channeling contrast and electron backscatter diffraction orientation mapping. Both the S and C orientation regions exhibit a heterogeneous microstructure containing bands of localized deformation. The presence of volumes surrounded by high angle boundaries in these regions strongly influences both the recovery and recrystallization behaviour of the material. Twinning was observed also to play an important role in the generation of recrystallized grains, with twin chains of up to 3 generations being observed.


2014 ◽  
Vol 354 ◽  
pp. 93-100
Author(s):  
Martin Vlach ◽  
Ivana Stulíková ◽  
Bohumil Smola ◽  
Hana Kudrnova ◽  
Tomáš Kekule ◽  
...  

The effect of cold-rolling on mechanical and electrical properties, microstructure and recrystallization behaviour of the AlMn, AlScZr and AlMnScZr alloys was studied. The materials were investigated during isothermal annealing at 300, 400, 500 and 550°C and during step-by-step quasilinear annealing from 200°C up to 600°C with a heating rate of 100 K/h followed by subsequent isothermal annealing at 600°C/5 h. Precipitation reactions were studied by electrical resistometry and (micro) hardness measurements. The microstructure development was investigated by electron microscopy and electron backscatter diffraction examinations. The hardening effect is due to uniformly distributed Al3Sc and/or Al3(Sc,Zr) particles. The distinct changes in resistivity of the alloys above ∼ 300°C are mainly caused by precipitation of Mn-containing particles. It has a negligible effect on hardness. Phase transformations in the AlMn and AlMnScZr alloys are highly enhanced by cold rolling. The precipitation is dependent on the deformation degree – the more deformation the more intensive precipitation of the Mn-containing particles. The combination of Mn, Sc and Zr additions to Al substantially suppresses recrystallization at 550°C. A partial recrystallization was observed in the AlScZr alloy and AlMnScZr alloy after annealing 550°C/60 min and 550°C/760 min, respectively. The decomposition sequence of the supersaturated solid solution of the AlMnScZr alloy is compatible with the decomposition sequence of the AlScZr system accompanied and/or followed by the formation of Mn-containing particles.


2005 ◽  
Vol 105 ◽  
pp. 239-244 ◽  
Author(s):  
Dorothée Dorner ◽  
Stefan Zaefferer

An initially Goss-oriented ({110}<001> preferred crystal orientation) FeSi single crystal was cold rolled up to 89 % reduction in thickness. The microstructure and texture of shear bands, which develop at strains higher than 70 %, were investigated by the EBSD (electron backscatter diffraction) technique. The texture components within and ouside of the shear bands are the two symmetrical {111}<112> orientations and the {110}<001> orientation. We conclude that crystallographic slip is the deformation mechanism that is active both within and outside of the shear bands.


2018 ◽  
Vol 190 ◽  
pp. 11007
Author(s):  
Chi Zhang ◽  
Yijie Xu ◽  
Liwen Zhang ◽  
Yinlin Gu

The microstructure and texture of ferritic stainless steels (FSSs), formed during cold rolling and annealing processes, determine the mechanical properties of final sheet, especially the deep drawing formability. In this work, aNb, Ti stabilized17%Cr FSS was cold rolled with the reductions of 20%~70% and annealed for periods at 700°C. EBSD technique was used to characterize the microstructure evolution and inhomogeneous deformation strain distribution of the sheet during cold rolling. Partially annealed sheets were also analyzed to observe the nucleation and growth of recrystallized grains. Special attentions were paid on the crystal orientation of the deformed grains and recrystallzed grains. The results infer that in-grain shear band was formed in the cold rolled sample with the reduction higher than 30%, associated with the formation of high deformation strains. And the recrystallized grains prefer to form at some unique grain boundaries and in-grain shear bands. The orientations of recrystallized grains relates to the deformed grains.


2020 ◽  
Vol 837 ◽  
pp. 41-45
Author(s):  
Shuai Sun ◽  
Kai Hua Liu

In order to determine the evolution features of deformation twins for TA2 commercial pure titanium (cp-TA2), the TA2 samples were bent under different bending angles in three-point bending tests via a universal testing machine. The electron backscatter diffraction (EBSD) technique was applied to identify the grain boundaries (GBs) and twin boundaries (TBs) in the bending areas. The results reveal that the type of deformation area would effect the evolution of different deformation twins. It is inferred that the state of stress would promote the multiplication of the same type of deformation twins.


2006 ◽  
Vol 70 (4) ◽  
pp. 373-382 ◽  
Author(s):  
G. Nolze ◽  
G. Wagner ◽  
R. Saliwan Neumann ◽  
R. Skála ◽  
V. Geist

AbstractThe crystallographic orientation of carlsbergite (CrN) in the north Chile meteorite (hexahedrite) was investigated using electron backscatter diffraction and transmission electron microscopy. These studies examined the CrN crystals in the rhabdites (idiomorphic schreibersite) and in kamacite. It was found that the CrN crystals embedded in rhabdite show a number of different orientation relationships with the host crystals. These orientations can be explained based on the lattice dimensions of both coexisting crystalline materials. It was also found that both carlsbergite and kamacite are characterized by a high dislocation density (≥ l09 cm-2) while rhabdite is free of dislocations. It is supposed that in spite of the deformed metallic matrix, a general connection between the orientation relation of all the phases involved exists.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1215
Author(s):  
Mirza Atif Abbas ◽  
Yan Anru ◽  
Zhi Yong Wang

Additively manufactured tungsten and its alloys have been widely used for plasma facing components (PFCs) in future nuclear fusion reactors. Under the fusion process, PFCs experience a high-temperature exposure, which will ultimately affect the microstructural features, keeping in mind the importance of microstructures. In this study, microhardness and electron backscatter diffraction (EBSD) techniques were used to study the specimens. Vickers hardness method was used to study tungsten under different parameters. EBSD technique was used to study the microstructure and Kikuchi pattern of samples under different orientations. We mainly focused on selective laser melting (SLM) parameters and the effects of these parameters on the results of different techniques used to study the behavior of samples.


2011 ◽  
Vol 702-703 ◽  
pp. 574-577 ◽  
Author(s):  
Daniel Goran ◽  
G. Ji ◽  
M. N. Avettand-Fènoël ◽  
R. Taillard

Texture and microstructure of FSW joined Al and Cu sheets were investigated by means of electron backscatter diffraction (EBSD) technique. The analysis has revealed a strong texture evolution on both sides of the weld interface as well as a very complex microstructure. Grains were found to be fully recrystallized on both sides of the weld and with different average diameters at different specific zones of the weld.


2013 ◽  
Vol 19 (S4) ◽  
pp. 103-104
Author(s):  
C.B. Garcia ◽  
E. Ariza ◽  
C.J. Tavares

Zinc Oxide is a wide band-gap compound semiconductor that has been used in optoelectronic and photovoltaic applications due to its good electrical and optical properties. Aluminium has been an efficient n-type dopant for ZnO to produce low resistivity films and high transparency to visible light. In addition, the improvement of these properties also depends on the morphology, crystalline structure and deposition parameters. In this work, ZnO:Al films were produced by d.c. pulsed magnetron sputtering deposition from a ZnO ceramic target (2.0 wt% Al2O3) on glass substrates, at a temperature of 250 ºC.The crystallographic orientation of aluminum doped zinc oxide (ZnO:Al) thin films has been studied by Electron Backscatter Diffraction (EBSD) technique. EBSD coupled with Scanning Electron Microscopy (SEM) is a powerful tool for the microstructural and crystallographic characterization of a wide range of materials.The investigation by EBSD technique of such films presents some challenges since this analysis requires a flat and smooth surface. This is a necessary condition to avoid any shadow effects during the experiments performed with high tilting conditions (70º). This is also essential to ensure a good control of the three dimensional projection of the crystalline axes on the geometrical references related to the sample.Crystalline texture is described by the inverse pole figure (IPF) maps (Figure 1). Through EBSD analysis it was observed that the external surface of the film presents a strong texture on the basal plane orientation (grains highlighted in red colour). Furthermore it was possible to verify that the grain size strongly depends on the deposition time (Figure 1 (a) and (b)). The electrical and optical film properties improve with increasing of the grain size, which can be mainly, attributed to the decrease in scattering grain boundaries which leads to an increasing in carrier mobility (Figure 2).The authors kindly acknowledge the financial support from the Portuguese Foundation for Science and Technology (FCT) scientific program for the National Network of Electron Microscopy (RNME) EDE/1511/RME/2005.


Sign in / Sign up

Export Citation Format

Share Document