Effect of Warm Rolling on Microstructure and High Temperature Mechanical Behavior of a Nano-Structured Al-8Fe-2Mo-2V-1Zr Alloy

2005 ◽  
Vol 486-487 ◽  
pp. 411-414 ◽  
Author(s):  
Won Yong Kim ◽  
Jae Sung Park ◽  
Mok Soon Kim

Mechanical properties of a nano-structured Al-8Fe-2Mo-2V-1Zr alloy produced by spray forming and subsequent hot-extrusion at 420°C were investigated in terms of tensile test as a function of temperature. Warm rolling was adapted as an additional process to expect further refinement in microstructure. Well-defined equiaxed grain structure and finely distributed dispersoids with nano-scale in particle size were observed in the spray formed and hot extruded sample (as-received sample). The average grain size and particle size were measured to 500 nm and 50 nm, respectively. While it was found that warm rolling gives rise to precipitate fine dispersoids less than 10 nm without influencing the grain size of matrix phase, in the temperature range of RT∼150°C, distinguishable changes in ultimate tensile strength were not found between the as-received and warm-rolled samples. At elevated temperatures ranging from 350 to 550°C, warm-rolled sample showed a higher value of elongation than as-received one although similar values of elongation were observed between two samples at temperatures lower than 350°C.

Soil Research ◽  
1981 ◽  
Vol 19 (3) ◽  
pp. 355 ◽  
Author(s):  
G Blackburn

Difficulties in using granulometry to characterize the non-clay fraction of the presumed aeolian sediments known as parna are considered by reference to the results of repeated analyses of samples. Incomplete dispersion of clap accounted for different results with two samples, one being from material identified as subplastic. Bimodal size frequency distributions were detected for several samples, a condition which should invalidate modal diameter as the measure of average grain size. Mean diameter is regarded as an appropriate measure for the samples. The more accurate results obtained for the samples do not upset the earlier conclusions regarding distribution of Widgelli parna, but they suggest an important distinction between the western and eastern samples of the material. Suggestions are made concerning determination of particle size for parna samples.


2007 ◽  
Vol 26-28 ◽  
pp. 153-156 ◽  
Author(s):  
Hyeon Taek Son ◽  
Jae Seol Lee ◽  
Ji Min Hong ◽  
Dae Guen Kim ◽  
Kyosuke Yoshimi ◽  
...  

The as-cast microstructure of Mg-5Al-3Ca-2Sm alloy consists of equiaxed α-Mg matrix, (Mg, Al)2Ca eutectic phase and Al-Sm rich intermetallic compounds. This eutectic phase of the extruded alloys was elongated to extrusion direction and size of this phase was finered compare to that of as-cast alloys because of severe deformation during hot extrusion. After hot extrusion, the average grain size of Mg-5Al-3Ca and Mg-5Al-3Ca-2Sm alloys was 4.8 *m and 3.8 *m, respectively. In load-unload hardness test, penetration depth was decreased with added Sm and after extrusion procedure because of grain size refining by addition Sm and large deformation. Hardness value of the alloys containing Sm was higher than that of Mg-5Al-3Ca alloy due to grain refining and formation Al-Sm rich intermetallic compound at gain boundary and α-Mg matrix. Maximum hardness value was obtained at the extruded Mg-5Al-3Ca-2Sm alloy at elevated temperatures.


2013 ◽  
Vol 58 (1) ◽  
pp. 95-98 ◽  
Author(s):  
M. Zielinska ◽  
J. Sieniawski

Superalloy René 77 is very wide used for turbine blades, turbine disks of aircraft engines which work up to 1050°C. These elements are generally produced by the investment casting method. Turbine blades produced by conventional precision casting methods have coarse and inhomogeneous grain structure. Such a material often does not fulfil basic requirements, which concern mechanical properties for the stuff used in aeronautical engineering. The incorporation of controlled grain size improved mechanical properties. This control of grain size in the casting operation was accomplished by the control of processing parameters such as casting temperature, mould preheating temperature, and the use of grain nucleates in the face of the mould. For nickel and cobalt based superalloys, it was found that cobalt aluminate (CoAl2O4) has the best nucleating effect. The objective of this work was to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties at high temperature of nickel based superalloy René 77. For this purpose, the ceramic moulds were made with different concentration of cobalt aluminate in the primary slurry was from 0 to 10% mass. in zirconium flour. Stepped and cylindrical samples were casted for microstructure and mechanical examinations. The average grain size of the matrix ( phase), was determined on the stepped samples. The influence of surface modification on the grain size of up to section thickness was considered. The microstructure investigations with the use of light microscopy and scanning electron microscopy (SEM) enable to examine the influence of the surface modification on the morphology of ’ phase and carbides precipitations. Verification of the influence of CoAl2O4 on the mechanical properties of castings were investigated on the basis of results obtained form creep tests.


2021 ◽  
Vol 1016 ◽  
pp. 1503-1509
Author(s):  
Kosuke Ueki ◽  
Soh Yanagihara ◽  
Kyosuke Ueda ◽  
Masaaki Nakai ◽  
Takayoshi Nakano ◽  
...  

The Co-20Cr-15W-10Ni (CCWN, mass%) alloy has excellent corrosion resistance and strength-ductility balance and is applied in almost all balloon-expandable stent platforms. To further reduce the invasiveness of stent placement, it is necessary to reduce the diameter of the stent. That is, both high strength and high ductility should be achieved while maintaining a low yield stress. In our previous studies, it was discovered that low-temperature heat-treatment (LTHT) at 873 K improves the elongation of the CCWN alloy. In this study, we focused on the grain refinement by swaging and static recrystallization to improve the strength of the alloy. The as-swaged alloy was recrystallized at 1373–1473 K for 100–300 s, followed by LTHT. A fine grain structure with an average grain size of 3–17 μm was obtained by static recrystallization. The η-phase (M12X-M6X type precipitates, M: metallic elements, X: C and/or N) formed during the recrystallization at 1373–1448 K. The alloys recrystallized at 1448 and 1473 K had a homogeneous structure with a small variation in the grain size. On the other hand, the alloys recrystallized at 1373 and 1423 K had an inhomogeneous structure in which fine and coarse grains were mixed. Both the strength and ductility of the CCWN alloy were improved by combining high-temperature short-time recrystallization and LTHT.


2017 ◽  
Vol 266 ◽  
pp. 257-263
Author(s):  
Wassana Wichai ◽  
Rutchadakorn Isarapatanapong ◽  
Niwat Anuwongnukroh ◽  
Surachai Dechkunakorn

This study investigated four commercially available NiTi orthodontic archwires from different manufactures for their grain structure and surface roughness.Four commercially available pre-formed NiTi orthodontic archwire (Ormco, Sentalloy, Highland and NIC) with diameter 0.016 x 0.022 inch2 were tested. The wire samples were polished and etched to evaluate the morphology and structure of wire surface. Each NiTi archwire was investigated under a reflected light microscope of an Optical Microscope to analyze its grain structure and size, in longitudinal surfaces. The surfaces of wire were qualitatively examined in the secondary electron mode at common magnification (500X). The surface roughness was also evaluated by a surface roughness tester. The descriptive statistic was evaluated the mean and standard deviation of surface roughness and Medcale T-Test was to test the mean difference of the surface roughness in each brands. This study showed an average grain size of 2-8 μm for each NiTi archwire. The wire surface of Ormco and Highland showed straiations along the longitudinal axes, however Sentalloy and NIC showed small pores on the wire surface. The surface roughness was 0.09 μm for Highland, 0.25 μm for Sentalloy, 0.28 μm for Ormco and 0.46 μm for NIC archwire. The Highland was smoothest and NIC was the roughest. There were in significant (p < 0.05) difference of surface roughness of each brands. The results showed that the four manufactures NiTi archwires were different in grain size, wire surface and surface roughness. During clinical application, these archwires may exhibit different mechanical properties, such as strength, hardness, ductity, and friction because of their microstructure.


Author(s):  
Halil Ibrahim Kurt ◽  
Ibrahim H. Guzelbey ◽  
Serdar Salman ◽  
Razamzan Asmatulu ◽  
Mustafa Dere

This study investigates the influence of titanium (Ti) and magnesium (Mg) additions on aluminum (Al) alloys in order to evaluate the relationship between the structure and properties of the new alloys. The alloys obtained at elevated temperatures mainly consist of Al–2Mg–1Ti, Al–2Mg–3Ti, Al–4Mg–2Ti, and Al–6Mg–2Ti alloys, as well as α and τ solid solution phases of intermetallic structures. Microstructural analyses were performed using X-ray diffraction (XRD), optical microscope, and energy dispersive spectrometry (EDS) techniques. Test results show that the average grain size of the alloys decreased with the addition of Ti inclusions during the casting and solidification processes, and the smallest grain size was found to be 90 μm for the Al–6Mg–3Ti alloy. In addition, tensile properties of the Al–Mg–Ti alloys were initially improved and then worsened after the addition of higher concentrations of Ti. The highest tensile and hardness values of the alloys were Al–4Mg–2Ti (205 MPa) and Al–6Mg–3Ti (80 BHN). The primary reasons for having higher mechanical properties may be attributed to strengthening of the solid solution and refinement of the grain size and shape during the solidification process. For this study, the optimum concentrations of Ti and Mg added to the Al alloys were 4 and 2 wt.%, respectively. This study may be useful for field researchers to develop new classes of Al alloys for various industrial applications.


1997 ◽  
Vol 12 (9) ◽  
pp. 2447-2454 ◽  
Author(s):  
Gaurav Agarwal ◽  
Robert F. Speyer

Various rate controlled sintering (RCS) schedules were used on isostatically pressed particulate compacts of ZnO with Bi2O3 and Sb2O3 additives. For low additive content, smaller average grain sizes with more rapid RCS schedules were attributable to thermal schedules which minimized the time at elevated temperatures where grain growth could occur. β–Bi2O3, Zn7Sb2O12, and Zn2Sb3Bi3O14 phases formed during/after sintering. Elevated heat-treatment temperatures favored the formation of Zn7Sb2O12 and additional β–Bi2O3, while Zn2Sb3Bi3O14 was dominant in sintered samples where the RCS schedule did not result in temperatures in excess of 1100 °C. Zn2Sb3Bi3O14 precipitated during sintering, functioning as grain boundary pinning sites which impeded ZnO grain growth. Bismuth and antimony oxide-based liquid facilitated sintering at lower temperatures, which in turn resulted in decreased average grain size. Rapid RCS schedules for samples with low dopant content resulted in lower sintering temperatures, since time was not allowed for Zn2Sb3Bi3O14 precipitation to deplete the liquid phase. For higher dopant contents, liquid phase was adequately plentiful, wherein longer RCS schedules resulted in lower sintering temperatures. Increasing concentration of second phase generally fostered decreased grain size and attenuated the effect of thermal schedule on the microstructure. Electrical resistance and breakdown voltage increased consistent with decreasing ZnO average grain size.


2014 ◽  
Vol 1004-1005 ◽  
pp. 158-162 ◽  
Author(s):  
Xiang Ting Hong ◽  
Fu Chen ◽  
Fei Chen ◽  
Wang Yu ◽  
Bo Rong Sang ◽  
...  

Microstructures of metal micro parts after microforming at elevated temperatures must be evaluated due to mechanical properties depend on average grain size. In this work, the effects of specimen diameter on the microstructure and microhardness of a hot-extruded AZ31B magnesium alloy were studied. Obvious size effect on microstructure and microhardness of the alloy could be observed. The size effects could be explained by strain distribution and dislocation density differences between the two kinds of specimens.


2011 ◽  
Vol 239-242 ◽  
pp. 50-54 ◽  
Author(s):  
Guo Dong Shi ◽  
Jun Qiao

Annealing treatments at 200°C, 250 °C, 300°C, and 350°C were conducted on a twin-roll casted AZ31 sheet with an initial average grain size of 10.11 mm. Microstructure and mechanical behaviors were studied by optical microscope observation and tensile mechanical test. Expermeintal results show that grain size experienced three stage evolution during 180 min annealing at each temperature: recrystallization refinement, stabilization under dynamic balance of recrystallization and grain growth, and grain growth. The minimum average grain size of 5.96 μm was achieved after 120 min annealing at 200°C. The refined grain structure causes a decrease of ultimate tensile strength and an increase of elongation, and facilitates superplastic deformation of the material.


1996 ◽  
Vol 460 ◽  
Author(s):  
C. T. Liu ◽  
P. J. Maziasz ◽  
J. L. Wright

ABSTRACTThe objective of this study is to identify key microstructural parameters which control the mechanical properties of two-phase γ-TiAl alloys with lamellar structures. TiAl alloys with the base composition of Ti-47Al-2Cr-2Nb (at. %) were prepared by arc melting and drop casting, followed by hot extrusion at temperatures above the oc-transus temperature, Tα. The hot extruded materials were then heat treated at various temperatures above and below Tα in order to control microstructural features in these lamellar structures. The mechanical properties of these alloys were determined by tensile testing at temperatures to 1000° C. The tensile elongation at room temperature is strongly dependent on grain size, showing an increase in ductility with decreasing grain size. The strength at room and elevated temperatures is sensitive to interlamellar spacing, showing an increase in strength with decreasing lamellar spacing. Hall-Petch relationships hold well for the yield strength at room and elevated temperatures and for the tensile elongation at room temperature. Tensile elongations of about 5% and yield strengths around 900 MPa are achieved by controlling both colony size and interlamellar spacing. The mechanical properties of the TiAl alloys with controlled lamellar structures produced directly by hot extrusion are much superior to those produced by conventional thermomechanical treatments.


Sign in / Sign up

Export Citation Format

Share Document