Material-Specific Joining Techniques for Magnesium Body Structures

2005 ◽  
Vol 488-489 ◽  
pp. 357-360 ◽  
Author(s):  
Ortwin Hahn ◽  
S. Schumann ◽  
G. Meschut ◽  
T. Fuhrmann

In order to achieve further reductions in the weight of the body-in-white, efforts are being made in the field of car design to replace structural elements by magnesium components. In addition to the use of extrusion and sheet metal processes, die casting in particular is an especially important method of producing thin-walled, highly integrative components, because of the very good casting properties of magnesium. Integrating of die casted components into a vehicle structure calls for joining techniques which offer the maximum utilization of the materials of the joined parts under operating loads. This article discusses the necessity for material-specific joining techniques for future magnesium body structures. Using the example of aluminium/magnesium joints, the article describes the benefits of different joining techniques with regard to their efficient use of material in the case of both quasi-static and dynamic loads.

2021 ◽  
Vol 268 ◽  
pp. 01057
Author(s):  
Xiang Chen ◽  
Yuquan Zhang ◽  
Pei Jia ◽  
Zhaowen Lv ◽  
Rulin Ma

The developing trend of the light-weight car is the using of new light-weight materials and the optimization of the car body structure. The beam construction is the major bearing part of the car body. The thin–walled beam of the light-material plays a significant role in lightening the car' own weight, saving the materials, reducing fuel consumption and air pollution. Firstly, the relationship between the thin-walled beam that is fixed in both points and the attribute of the material can be infered from the stiffness coefficient which used as the quantitative index to estimate materials. Then take the body-in-white produced by domestic car factory as an object of study, and use Cu or Al or Mg as the materials of the thin-walled beam to calculate the bending rigidity and torsional stiffness of thewhole car body by using the FEM simulation conducted in HyperMesh.The results show that under the condition of bending and torsion, the SME value is lower when the lighten materials such as Al or Cu are used as the bodywork of the thin-walled beam than steel is. Lighten material can greatly reduce the weight of the vehicle. But it also decreased the bending and torsional stiffness of the bodywork. Therefore, in order to avoid decreasing mechanical properties which caused by adopting lighten materials, we must consider the structural design of the thin-walled beam when adopt material for lightweight.


2012 ◽  
Vol 446-449 ◽  
pp. 109-113
Author(s):  
Dai Guo Chen ◽  
Yong Yao ◽  
Wei Gu

Pre-stressed reaction wall is an important test facility in structure laboratory.Reaction wall will bear large static and dynamic loads when working, so pre-stressed concrete structure is often used. A model of micro-concrete pre-stressed reaction wall is made in the test in order to insure tension quality of steel strand of reaction wall. Proposed 4 different tension schemes of reaction wall pre-stress rebar, and a comparative study on the variety trend and distribution of strain on reaction wall in the 4 different schemes.The experimental results show that the best schemes of tension pre-stress rebar is:use the wall cross-section center of gravity as the symmetric point, tension symmetrical up and down from central to outside.And we suggest that two times or supplement tension methods be use to stretching steel strand of reaction wall.


2008 ◽  
pp. 167-176
Author(s):  
Dusan Skakic ◽  
Igor Dzincic

The result of parallel investigation of chair durability, which has been made in two different wood species (beach and Paulwonia tomentosa) has been presented in this paper. Static and dynamic loads has highest values in seating furniture, and that is the reason why chair has been chosen to bee representative for testing new species, which could be used in furniture production in Serbia. A shown results indicates on possibility that this species can be used only for production furniture which wont bee imposed with heavy loads during exploitation.


Author(s):  
Nora Goldschmidt ◽  
Barbara Graziosi

The Introduction sheds light on the reception of classical poetry by focusing on the materiality of the poets’ bodies and their tombs. It outlines four sets of issues, or commonplaces, that govern the organization of the entire volume. The first concerns the opposition between literature and material culture, the life of the mind vs the apprehensions of the body—which fails to acknowledge that poetry emerges from and is attended to by the mortal body. The second concerns the religious significance of the tomb and its location in a mythical landscape which is shaped, in part, by poetry. The third investigates the literary graveyard as a place where poets’ bodies and poetic corpora are collected. Finally, the alleged ‘tomb of Virgil’ provides a specific site where the major claims made in this volume can be most easily be tested.


2021 ◽  
Vol 13 (5) ◽  
Author(s):  
Viktória Mozgai ◽  
Bernadett Bajnóczi ◽  
Zoltán May ◽  
Zsolt Mráv

AbstractThis study details the non-destructive chemical analysis of composite silver objects (ewers, situlas, amphora and casket) from one of the most significant late Roman finds, the Seuso Treasure. The Seuso Treasure consists of fourteen large silver vessels that were made in the fourth–early fifth centuries AD and used for dining during festive banquets and for washing and beautification. The measurements were systematically performed along a pre-designed grid at several points using handheld X-ray fluorescence analysis. The results demonstrate that all the objects were made from high-quality silver (above 90 wt% Ag), with the exception of the base of the Geometric Ewer B. Copper was added intentionally to improve the mechanical properties of soft silver. The gold and lead content of the objects shows constant values (less than 1 wt% Au and Pb). The chemical composition as well as the Bi/Pb ratio suggests that the parts of the composite objects were manufactured from different silver ingots. The ewers were constructed in two ways: (i) the base and the body were made separately, or (ii) the ewer was raised from a single silver sheet. The composite objects were assembled using three methods: (i) mechanical attachment; (ii) low-temperature, lead-tin soft solders; or (iii) high-temperature, copper-silver hard solders. Additionally, two types of gilding were revealed by the XRF analysis, one with remnants of mercury, i.e. fire-gilding, and another type without remnants of mercury, presumably diffusion bonding.


1940 ◽  
Vol 44 (349) ◽  
pp. 44-73
Author(s):  
Wilhelm Kuech

Laminated materials incorporating plastics seem to be especially well suited lor highly stressed aircraft components, by reason of their good strength properties. Paper, fabric and wood veneers treated with plastics on a phenolic basis were tested with regard to their strength, especially in bending, shear, absorbed energy in impact bending, notching strength and in their resistance against moisture. Further, the behaviour of compressed plastics was studied at different temperatures under static and dynamic loads. A part of the research was extended to pure phenol resin and to thermoplastics based on methacrylate and polyvinylchloride. The bonding properties of laminated compressed plastics were established. Concluding, some experiments relating to the practical manufacture of aeroplane components are communicated.


2016 ◽  
Vol 121 (1235) ◽  
pp. 73-94 ◽  
Author(s):  
A. Castrichini ◽  
V. Hodigere Siddaramaiah ◽  
D.E. Calderon ◽  
J.E. Cooper ◽  
T. Wilson ◽  
...  

ABSTRACTA recent consideration in aircraft design is the use of folding wing-tips with the aim of enabling higher aspect ratio aircraft with less induced drag while also meeting airport gate limitations. This study investigates the effect of exploiting folding wing-tips in flight as a device to reduce both static and dynamic loads. A representative civil jet aircraft aeroelastic model was used to explore the effect of introducing a wing-tip device, connected to the wings with an elastic hinge, on the load behaviour. For the dynamic cases, vertical discrete gusts and continuous turbulence were considered. The effects of hinge orientation, stiffness, damping and wing-tip weight on the static and dynamic response were investigated. It was found that significant reductions in both the static and dynamic loads were possible. For the case considered, a 25% increase in span using folding wing-tips resulted in almost no increase in loads.


1939 ◽  
Vol 17 (2) ◽  
pp. 69-82 ◽  
Author(s):  
D. W. Fenwick

Numerous attempts have been made in the past to induce the eggs of Ascaris suum to hatch outside the body of the host. Extra-corporeal hatching has been observed under a variety of conditions by different workers. Kondo (1920, 1922), Asada (1921) and others record hatching in water, charcoal and sand cultures. Wharton (1915) states that hatching will occur in alkaline digestive juices, while Martin (1913) records a similar phenomenon in pancreatic fluid. Many different explanations have been offered to explain this hatching. Wharton suggested that the interaction of algae and sand might have some effect. Ohba (1923), who found that hatching would occur in 0·2% hydrochloric acid and 0·2% sodium carbonate believed that extra-corporeal hatching was limited to very old cultures of eggs. Many workers are of the opinion that some stimulus normally present in the digestive tract is necessary for hatching.


2014 ◽  
Vol 1061-1062 ◽  
pp. 748-750
Author(s):  
Heng Chen ◽  
Ke Sheng Ma

For socked and non-socketed piles in the different mechanical behavior under static and dynamic loads, the paper use ABAQUS to model, simulate the pile , the soil interlayer thickness between the bottom of the pile and bedrock are 2m, 4m under vertical load and Earthquake, cushion cap, pile and pile soil stress situation found non-socketed piles when the soil interlayer thickness within a certain range, the composite pile small subside under dynamic, static loads, the non-socketed piles can better take advantage of the pile soil has a good seismic performance in the earthquake.


Sign in / Sign up

Export Citation Format

Share Document