Uniformity of Grain Coarsening in Submicron Grained Al-Sc Alloy Containing Local Variations in Texture

2005 ◽  
Vol 495-497 ◽  
pp. 609-614
Author(s):  
Michael Ferry

The effect of fine particles on the uniformity of grain coarsening in a submicron grained Al-Sc alloy containing significant local variations in texture has been investigated using high resolution EBSD. The alloy was processed by severe plastic deformation and low temperature ageing to generate a fine-grained (0.8 µm diameter) microstructure containing either a dispersion of nanosized Al3Sc particles or a particle-free matrix. The initial processing generated a uniform grain size distribution, but the distribution of grain orientations was inhomogeneous with the microstructure containing colonies of grains consisting predominantly of either HAGBs or LAGBs with the latter possessing orientation gradients of up to 10 o/µm. Despite the marked differences in boundary character between these regions, the alloy undergoes slow and uniform grain coarsening during annealing at temperatures up to 500 oC with no marked change in the grain size distribution, boundary distribution and texture. A model of grain coarsening that takes into account the influence of fine particles on the kinetics of grain growth within an orientation gradient is outlined. The model predicts that a large volume fraction of fine particles (large f/r-value) tends to homogenize the overall rate of grain coarsening despite the presence of orientation gradients in the microstructure.

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Ran Yuan ◽  
Dan Ma ◽  
Hongwei Zhang

A test system for water flow in granular gangue mineral was designed to study the flow characteristics by compaction treatment. With the increase of the compaction displacement, the porosity decreases and void in granular gangue becomes less. The main reason causing initial porosity decrease is that the void of larger size is filled with small particles. Permeability tends to decrease and non-Darcy flow factor increases under the compaction treatment. The change trend of flow characteristics shows twists and turns, which indicate that flow characteristics of granular gangue mineral are related to compaction level, grain size distribution, crushing, and fracture structure. During compaction, larger particles are crushed, which in turn causes the weight of smaller particles to increase, and water flow induces fine particles to migrate (weight loss); meanwhile, a sample with more weight of size (0–2.5 mm) has a higher amount of weight loss. Water seepage will cause the decrease of some chemical components, where SiO2 decreased the highest in these components; the components decreased are more likely locked at fragments rather than the defect of the minerals. The variation of the chemical components has an opposite trend when compared with permeability.


2006 ◽  
Vol 519-521 ◽  
pp. 1617-1622 ◽  
Author(s):  
N. Burhan ◽  
Michael Ferry

Severe plastic straining is an established method for producing submicron grain (SMG) structures in alloys. However, the development of such a fine grained structure in single-phase alloys is usually futile if they are to be exposed or processed at elevated temperatures. This is a direct consequence of the natural tendency for rapid and substantial grain coarsening which completely removes the benefits obtained by grain refinement. This problem may be avoided by the introduction of nanosized, highly stable particles in the metal matrix. In this work, a SMG structure was generated in an Al-0.3 wt.% Sc alloy by Equal Channel Angular Pressing (ECAP). The alloy was prepared initially to produce a fine grained microstructure exhibiting a large fraction of high angle grain boundaries and a dispersion of nanosized Al3Sc particles. The evolution of microstructure during annealing at temperatures up to 550 °C was examined in detail and grain size distributions generated from the data. It was shown that grain coarsening is rapid at temperatures above 450 °C and the initial log-normal grain size distribution exhibiting low variance and skewness was altered considerably. The statistical information generated from the grain size distributions confirms that discontinuous grain coarsening occurs in this alloy only at temperatures greater than 500 °C.


2016 ◽  
Vol 879 ◽  
pp. 542-547
Author(s):  
Mehdi Sanjari ◽  
Amir Rezaei Farkoosh ◽  
Abu S.H. Kabir ◽  
Jing Su ◽  
In Ho Jung ◽  
...  

Texture evolution in two magnesium alloys, Mg-4%Zn-1%Nd and Mg-1%Zn-1%Nd (weight percentage), was studied after rolling and the subsequent isothermal annealing. The finish rolling was completed in a single pass with a thickness reduction rate of ~30% at 100 °C and a rolling speed of 1000 m/min. After cooling to room temperature, the rolled samples were annealed at 350 °C for different annealing times. Upon annealing, the maximum intensity of the basal pole texture decreases as recrystallization progresses. In the Mg-1Zn-1Nd alloy (with a high Nd/Zn ratio), texture weakening is maintained even after complete recrystallization and grain coarsening, while in the Mg-4Zn-1Nd alloy, texture strengthening occurs after grain coarsening, and a single peak replaces the double split basal peaks. In the Mg-1Zn-1Nd alloy, grain coarsening is accompanied by a bimodal grain size distribution, whereas in the Mg-4Zn-1Nd alloy, the grain coarsening leads to a uniform grain size distribution. TEM investigations show the formation of the Zn and Nd rich clusters at early stage of annealing in both alloys. During recrystallization, these clusters were dissolved in the Mg-4Zn-1Nd alloy, but they are more stable in the Mg-1Zn-1Nd alloy. In our opinion, the formation of these stable clusters is one of the main factors for texture weakening of the Mg-Zn-RE alloys.


Author(s):  
Robert Głowski ◽  
Robert Kasperek

Abstract The grain size distribution of settled sediment within storage reservoir Otmuchów. The river Nysa Kłodzka is flowing through the flat-reduction Otmuchów. There are localized two storage reservoirs Otmuchów and Nysa. The first of these reservoirs have been constructed in the period 1928-1933 and the filling was completed in 1934. Reservoir Nysa was completed in 1971. Both reservoirs are located within walking distance of each other, creating since 1971 cascade. Reservoir Otmuchów is located above the Nysa reservoir what cause, that in the bowl of the Otmuchów reservoir, the significant part of transported by Nysa Kłodzka sediments is deposited. When established after the 1997 flood damming levels, summer and winter, the length of the reservoir Otmuchów is suitably from 4.5 to 5 km. At the maximum impoundment level and a maximal capacity of 130.45 million m3 the reservoir length reach approx. 7 km. From the analysis of the satellite image can be seen advancing silting of the reservoir Otmuchów especially in the estuary zone of the Nysa Kłodzka. Obtained archival data about changes of the sediment grain size distribution in the longitudinal reservoir profile cover only the region of the still capacity extending a distance of 3 km from the cross-section of the dam. In this zone the fine particles of the suspended load with characteristic diameters ranging from 0.030 to 0.088 mm were embedded. In 2010, the authors presented the results of preliminary analysis of the silting process of the reservoir Otmuchów. The authors pointed out that there is a lack of the data about the dimension of the particles embedded in the usable capacity and flood capacity reserve (above 3 km from the dam) causing visible on satellite photo silting. This paper presents the results of the sediment grain size distribution in the usable capacity of the reservoir and in the estuary region of the Nysa Kłodzka located in flood capacity reserve, obtained from the sediment samples analysis. Obtained results allowed to supplement the image of the particle size distribution of the sediment being deposited in the reservoir Otmuchów longitudinal profile and an evaluation of the parameters of mobility rubble with fixed diameters.


1995 ◽  
Vol 398 ◽  
Author(s):  
R. A. Ristau ◽  
K. Barmak ◽  
D. W. Hess ◽  
K. R. Coffey ◽  
M. A. Parker ◽  
...  

ABSTRACTOrdering and grain growth have been studied in a 10 nm thick CoPt alloy film of equiatomic composition annealed in the temperature range 550–700°C by quantifying ordered domain size, volume fraction ordered, grain size, and grain size distribution. Ordering occurs by nucleation and growth of Ll0 ordered domains, with a mean size of 3 nm at 550°C and 19 nm at 700°C. The volume percent ordered shows a dramatic increase from <y1% to approximately 28% between the two extremes of annealing temperature. The mean grain size of the as-deposited films is 5 nm and the entire film is face-centered cubic. Upon annealing in the temperature range 550–600°C, the mean grain size reaches a stagnation limit of 27 nm and the grain size distribution is log-normal. Grain growth resumes beyond 600°C and the mean grain size reaches as high as 55 nm at 700°C. The increase in the coercivity of the annealed films follows the increase in the ordered fraction more closely than the increase in grain size. The shape of the M-H loop shows evidence of coupling between the magnetically hard (ordered) and soft (disordered) regions.


2013 ◽  
Vol 368-370 ◽  
pp. 855-859
Author(s):  
Xiang Liu ◽  
Rui Jie Yu

Through the packing particles analysis test and heavy compaction test at different depths of new system of Baotou steel finished product of the test section , analysis of the grain size distribution of slag and fly ash mixture and the content of coarse and fine particles on compaction effect are conducted , the results show that the filler embankment foundation is mainly for uniform gradation and continuous filler, when the coarse particle of the filler is 83% ~ 84% content, the compaction effect is best. Using multiple linear regression, the grain size distribution characteristics of the filler particle size equation, coarse and fine particle content and maximum dry density of the regression equation are obtained .


2014 ◽  
Vol 1081 ◽  
pp. 132-137
Author(s):  
Song Feng Tian ◽  
Hong Jian Yu ◽  
Ying Guang Liu ◽  
Rong Yuan Ju ◽  
Xiao Dong Mi ◽  
...  

Giving a bimodal grain size distribution in nanocrystalline materials can effectively achieve both high strength and high ductility. Here we propose a theoretical model to study the failure behavior of nc materials with bimodal grain size distribution. The dependence of failure properties on grain size distribution were calculated. Numerical results show the strength and ductility of bimodal nanocrystalline materials are sensitive to grain size and the volume fraction of coarse grains.


2017 ◽  
Vol 727 ◽  
pp. 432-437
Author(s):  
Ying Guang Liu ◽  
Shi Bing Zhang ◽  
Zhong He Han ◽  
Xiao Yan Zhu

Nanostructured Cu-Ag alloys with bimodal grain size distribution were prepared and their tensile deformation behaviors were studied. The alloys were processed by hot isostatic pressing of blends of nanoand micrometer-sized powder particles. The microstructure of the alloys consisted of nanograins with an average grain size of 40 nm and coarse-grains with an average grain size of 30 um. The bimodal structured alloy exhibited high tensile strengths 522 MPa and a large plastic strain to failure approximately 30%. Simultaneously, Their tensile stress-strain curves displayed a long work-hardening region, and their tensile ductility increased with increasing coarse-grained volume fraction. The high strength primarily results from the contribution of nanograins, while the enhanced ductility may be attributed to the improved strain hardening capability by the presence of coarse grains.


Sign in / Sign up

Export Citation Format

Share Document