Influence of RE on Microstructure and Mechanical Properties of Mg-Li-Al Alloys

2007 ◽  
Vol 546-549 ◽  
pp. 211-216 ◽  
Author(s):  
Bin Liu ◽  
M.L. Zhang ◽  
Zhong Yi Niu

A series of alloys were designed and prepared using vacuum melting furnace. The as-cast microstructure and phase compositions of these alloys were characterized by optical microscope, X-ray diffraction (XRD) and scanning electronic microscope (SEM). The hardness and mechanical properties of alloys at room temperature were measured as well. The results show that the addition of RE leads to the formation of intermetallic Al3La distributed within grain boundaries. The intermetallic compound with oriented structure impedes grain growth, and refines the grain. The strength and the hardness of the alloys increase with the increase of the RE content in the range of 0.2-0.8 wt %.

2007 ◽  
Vol 546-549 ◽  
pp. 257-260 ◽  
Author(s):  
Zhen Yan Zhang ◽  
Li Ming Peng ◽  
Xiao Qin Zeng ◽  
Lin Du ◽  
Lan Ma ◽  
...  

Effects of extrusion on mechanical properties and damping capacity of Mg-1.8wt.%Cu -0.5wt.%Mn (MCM1805) alloy have been investigated. Tensile tests and dynamic mechanical analyzer were respectively used to measure tensile properties and damping capacity at room temperature of as-cast and as-extruded MCM1805 alloy. The microstructure was studied using optical microscope, X-ray diffraction and scanning electron microscope with an energy dispersive X-ray spectrometer. Granato-Lücke model was used to explain the influences of extrusion on damping capacity of MCM1805 alloy. The results showed that extrusion dramatically decreases the grain size but has little influence on phase composition and solute atoms concentration of MCM1805 alloy, and the grain refinement was the dominant reason for the obvious increase of tensile properties and decrease of internal friction of MCM1805 alloy.


2014 ◽  
Vol 893 ◽  
pp. 387-391
Author(s):  
Shan Jiang ◽  
Bin Zeng ◽  
Lyes Douadji

AZ31 magnesium alloy samples were compressed to different strains at room temperature and examined through the optical microscope, X-ray diffraction (XRD) and scanning electronic microscope. The results show that the produced twins were mainly the {102} type, and then the {101} type and {102}-{101} type. The size and amount of the twins increased with the strains growth, and after the saturation of twins in the grains the samples fractured. The compressed texture with the basal planes perpendicular to the compression direction also become stronger with strain increase. The {102} twinning deformation played an important role in changing the microstructure and properties of the magnesium alloy at room temperature.


2011 ◽  
Vol 194-196 ◽  
pp. 1374-1377
Author(s):  
Chang Qing Li ◽  
Quan an Li ◽  
Xing Yuan Zhang ◽  
Qing Zhang

The microstructure and mechanical properties of aged Mg-5.5Al-1.2Y magnesium alloy with Sb addition are investigated by optical microscope, SEM and X-ray diffraction analyzer. The results show that with proper content of Sb addition,the microstructure of Mg-5.5Al-1.2Y magnesium alloy is refined obviously and high melting point intermetallic compounds Sb3Y5 and Mg3Sb2 are formed. Meanwhile, the β-Mg17Al12 phase is more distributed. With the increase of Sb addition, the mechanical properties of the alloy at room and elevated temperature increase at first, and then decrease. When the content of Sb is up to 0.5%, the values of tensile strength and elongation at room temperature, 150ºC and 175ºC are up to their maxima synchronously, 241MPa /16.84%, 198MPa/20.27.86% and 169MPa/21.21% respectively.


2017 ◽  
Vol 866 ◽  
pp. 199-203
Author(s):  
Chidchanok Chainej ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aims of this research were study the microstructures and mechanical properties for partial replacement of cement with Fly ash (FA) and kaolin waste (KW). Ordinary Portland cement were partially replaced with FA and KW in the range of 25-35% and 10-25% by weight of cement powder. The kaolin waste was ground for 180 minutes before using. The specimen was packing into an iron mold which sample size of 5×5×5 cm3. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the incubation lime water bath at age of 3 days. After that the specimens were dry cured with plastic wrap at age of 3, 7, 14 and 28 days. After that the compounds were examined by x-ray diffraction patterns (XRD) and the microstructures were examined by scanning electron microscopy (SEM). The compressive strength was then investigated.


2014 ◽  
Vol 622-623 ◽  
pp. 174-178
Author(s):  
Ahmed Ismail Zaky Farahat ◽  
Mohamed Kamal Elfawkhry

Two alloys of steel containing nominally 0.45C-1.0Si-2.0Mn-0.8Al and 1.2Al were cast in open air induction furnace. Dilatation testing was carried out to recognize the effect on Aluminum on the different critically transformation temperatures. The alloys were hot forged at 1200°C and then subjected to different cooling rates. Mechanical testing was carried out at room temperature. Optical and SEM microstructure were observed. X-ray diffraction was conducted to observe the microstructure constituents.


2010 ◽  
Vol 654-656 ◽  
pp. 2126-2129 ◽  
Author(s):  
Yuichi Nakahira ◽  
Tomonari Inamura ◽  
Hiroyasu Kanetaka ◽  
Shuichi Miyazaki ◽  
Hideki Hosoda

Effect of nitrogen (N) addition on mechanical properties of Ti-Cr-Sn alloy was investigated in this study. Ti-7mol%Cr-3mol%Sn was selected and less than 0.5wt% of N were systematically added. The alloys were characterized by optical microscopy, X-ray diffraction analysis and tensile tests at room temperature. The apparent phase was β (bcc) phase, whereas the presence of precipitates was confirmed in 0.5wt%N-added alloy only which did not exhibit sufficient cold workability. The grain size was not largely affected by N addition being less than 0.5wt%. Tensile tests revealed that less than 0.5wt%N addition improves the strength which is due to the solution hardening by interstitial N atoms.


2011 ◽  
Vol 172-174 ◽  
pp. 190-195 ◽  
Author(s):  
Giorgia T. Aleixo ◽  
Eder S.N. Lopes ◽  
Rodrigo Contieri ◽  
Alessandra Cremasco ◽  
Conrado Ramos Moreira Afonso ◽  
...  

Ti-based alloys present unique properties and hence, are employed in several industrial segments. Among Ti alloys, β type alloys form one of the most versatile classes of materials in relation to processing, microstructure and mechanical properties. It is well known that heat treatment of Ti alloys plays an important role in determining their microstructure and mechanical behavior. The aim of this work is to analyze microstructure and phases formed during cooling of β Ti-Nb-Sn alloy through different cooling rates. Initially, samples of Ti-Nb-Sn system were prepared through arc melting furnace. After, they were subjected to continuous cooling experiments to evaluate conditions for obtaining metastable phases. Microstructure analysis, differential scanning calorimetry and X-ray diffraction were performed in order to evaluate phase transformations. Depending on the cooling rate and composition, α” martensite, ω phase and β phase were obtained. Elastic modulus has been found to decrease as the amount of Sn was increased.


2019 ◽  
Vol 54 (7) ◽  
pp. 981-997
Author(s):  
Semegn Cheneke ◽  
D Benny Karunakar

In this research, microstructure and mechanical properties of stir rheocast AA2024/TiB2 metal matrix composite have been investigated. The working temperature was 640℃, which was the selected semisolid temperature that corresponds to 40% of the solid fraction. Two weight percentage, 4 wt%, and 6 wt% of the TiB2 reinforcements were added to the matrix. The field emission scanning electron microscope micrographs of the developed composites showed a uniform distribution of the particles in the case of the 2 wt% and 4 wt% of the reinforcements. However, the particles agglomerated as the weight percentages of the reinforcement increases to 6%. The optical microscope of the liquid cast sample showed the dendritic structure, whereas the rheocast samples showed a globular structure. The X-ray diffraction analysis confirmed the distribution of the reinforcements in the matrix and the formation of some intermetallic compounds. Mechanical properties significantly improved by the addition of the reinforcements in the matrix. An increase in tensile strength of 13.3%, 40%, 28%, and 5% was achieved for the unreinforced rheocast sample, 2 wt%, 4 wt%, and 6 wt% reinforced rheocast samples respectively, compared to the liquid cast sample. An increase in 20% of hardness was attained for the composite with 2 wt% TiB2 compared to the liquid cast sample. According to the fractography analysis, small dimples were observed on the fractured surface of the unreinforced rheocast sample, whereas small and large voids were dominant on the fractured surface of the 2 wt% composite, which shows the ductile fracture mode.


2013 ◽  
Vol 749 ◽  
pp. 643-647 ◽  
Author(s):  
Lei Li ◽  
Ya Feng Lu ◽  
Wen Xue Li ◽  
Li Ying Zeng ◽  
Yi Yang ◽  
...  

Ti-6Al-4V films were deposited by direct-current magnetron sputtering at different substrate temperatures. The structure and the surface morphology of the films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The hardness and elastic moduli of Ti-6Al-4V films were measured by nanoindentation test. The results showed that the phase direction of the films deposited at room temperature was (102) orientation, and turned to almost complete (002) preferred orientation at 300°C. For a higher temperature of 500°C, the preferred orientation of the film disappeared and presented a random grain orientation. The hardness and elastic moduli of Ti-6Al-4V films obviously showed the dependence on the temperature. The relationships among temperature, microstructure and mechanical properties of Ti-6Al-4V films were discussed in this paper.


2007 ◽  
Vol 546-549 ◽  
pp. 301-304
Author(s):  
Wei Qiu ◽  
En Hou Han ◽  
Lu Liu

Addition of RE elements to Al-containing Mg alloys can improve properties of Mg alloys at elevated temperatures. In the present investigation, hot-extruded AZ31+x%Nd. (x=0.1,0.3,0.6and1.0 wt%) wrought Mg alloy were prepared .The effects of Nd on microstructures and mechanical properties at room temperature of new alloy were investigated. The investigation found that Nd can bring about two kind of precipitation phases . One is AlNd phase, the other is AlNdMn phase, which were identified as Al11Nd3 and Al8NdMn4 by X-ray diffraction and TEM.


Sign in / Sign up

Export Citation Format

Share Document