Effect of Deposition Temperature on the Structure and Mechanical Properties of Ti-6Al-4V Film

2013 ◽  
Vol 749 ◽  
pp. 643-647 ◽  
Author(s):  
Lei Li ◽  
Ya Feng Lu ◽  
Wen Xue Li ◽  
Li Ying Zeng ◽  
Yi Yang ◽  
...  

Ti-6Al-4V films were deposited by direct-current magnetron sputtering at different substrate temperatures. The structure and the surface morphology of the films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The hardness and elastic moduli of Ti-6Al-4V films were measured by nanoindentation test. The results showed that the phase direction of the films deposited at room temperature was (102) orientation, and turned to almost complete (002) preferred orientation at 300°C. For a higher temperature of 500°C, the preferred orientation of the film disappeared and presented a random grain orientation. The hardness and elastic moduli of Ti-6Al-4V films obviously showed the dependence on the temperature. The relationships among temperature, microstructure and mechanical properties of Ti-6Al-4V films were discussed in this paper.

2017 ◽  
Vol 866 ◽  
pp. 199-203
Author(s):  
Chidchanok Chainej ◽  
Suparut Narksitipan ◽  
Nittaya Jaitanong

The aims of this research were study the microstructures and mechanical properties for partial replacement of cement with Fly ash (FA) and kaolin waste (KW). Ordinary Portland cement were partially replaced with FA and KW in the range of 25-35% and 10-25% by weight of cement powder. The kaolin waste was ground for 180 minutes before using. The specimen was packing into an iron mold which sample size of 5×5×5 cm3. Then, the specimens were kept at room temperature for 24 hours and were moist cured in the incubation lime water bath at age of 3 days. After that the specimens were dry cured with plastic wrap at age of 3, 7, 14 and 28 days. After that the compounds were examined by x-ray diffraction patterns (XRD) and the microstructures were examined by scanning electron microscopy (SEM). The compressive strength was then investigated.


2012 ◽  
Vol 525-526 ◽  
pp. 277-280
Author(s):  
Guo Jin ◽  
Xiu Fang Cui ◽  
Er Bao Liu ◽  
Qing Fen Li

The effect of the neodymium content on mechanical properties of the electro-brush plated nanoAl2O3/Ni composite coating was investigated in this paper. The microstructure and phase structure were studied with scanning electron microscope (SEM) and X-ray diffraction (XRD). The hardness and abrasion properties of several coatings with different neodymium content were studied by nanoindentation test and friction / wear experiment. Results show that the coatings are much finer and more compact when the neodymium was added, and the hardness and abrasion property of the coatings with neodymium were improved obviously. Besides, the small cracks conduced by the upgrowth stress in the coatings were ameliorated when the rare earth neodymium was added. The improvement mechanism was further discussed.


2014 ◽  
Vol 622-623 ◽  
pp. 174-178
Author(s):  
Ahmed Ismail Zaky Farahat ◽  
Mohamed Kamal Elfawkhry

Two alloys of steel containing nominally 0.45C-1.0Si-2.0Mn-0.8Al and 1.2Al were cast in open air induction furnace. Dilatation testing was carried out to recognize the effect on Aluminum on the different critically transformation temperatures. The alloys were hot forged at 1200°C and then subjected to different cooling rates. Mechanical testing was carried out at room temperature. Optical and SEM microstructure were observed. X-ray diffraction was conducted to observe the microstructure constituents.


2010 ◽  
Vol 654-656 ◽  
pp. 2126-2129 ◽  
Author(s):  
Yuichi Nakahira ◽  
Tomonari Inamura ◽  
Hiroyasu Kanetaka ◽  
Shuichi Miyazaki ◽  
Hideki Hosoda

Effect of nitrogen (N) addition on mechanical properties of Ti-Cr-Sn alloy was investigated in this study. Ti-7mol%Cr-3mol%Sn was selected and less than 0.5wt% of N were systematically added. The alloys were characterized by optical microscopy, X-ray diffraction analysis and tensile tests at room temperature. The apparent phase was β (bcc) phase, whereas the presence of precipitates was confirmed in 0.5wt%N-added alloy only which did not exhibit sufficient cold workability. The grain size was not largely affected by N addition being less than 0.5wt%. Tensile tests revealed that less than 0.5wt%N addition improves the strength which is due to the solution hardening by interstitial N atoms.


2007 ◽  
Vol 546-549 ◽  
pp. 257-260 ◽  
Author(s):  
Zhen Yan Zhang ◽  
Li Ming Peng ◽  
Xiao Qin Zeng ◽  
Lin Du ◽  
Lan Ma ◽  
...  

Effects of extrusion on mechanical properties and damping capacity of Mg-1.8wt.%Cu -0.5wt.%Mn (MCM1805) alloy have been investigated. Tensile tests and dynamic mechanical analyzer were respectively used to measure tensile properties and damping capacity at room temperature of as-cast and as-extruded MCM1805 alloy. The microstructure was studied using optical microscope, X-ray diffraction and scanning electron microscope with an energy dispersive X-ray spectrometer. Granato-Lücke model was used to explain the influences of extrusion on damping capacity of MCM1805 alloy. The results showed that extrusion dramatically decreases the grain size but has little influence on phase composition and solute atoms concentration of MCM1805 alloy, and the grain refinement was the dominant reason for the obvious increase of tensile properties and decrease of internal friction of MCM1805 alloy.


2007 ◽  
Vol 546-549 ◽  
pp. 301-304
Author(s):  
Wei Qiu ◽  
En Hou Han ◽  
Lu Liu

Addition of RE elements to Al-containing Mg alloys can improve properties of Mg alloys at elevated temperatures. In the present investigation, hot-extruded AZ31+x%Nd. (x=0.1,0.3,0.6and1.0 wt%) wrought Mg alloy were prepared .The effects of Nd on microstructures and mechanical properties at room temperature of new alloy were investigated. The investigation found that Nd can bring about two kind of precipitation phases . One is AlNd phase, the other is AlNdMn phase, which were identified as Al11Nd3 and Al8NdMn4 by X-ray diffraction and TEM.


2005 ◽  
Vol 475-479 ◽  
pp. 3729-3732
Author(s):  
Cong Mian Zhen ◽  
Xiao Xia Zhai ◽  
Chengfu Pan ◽  
Xiangfu Nie

FePt/C mutilayer films were successfully prepared by using RF and DC magnetron sputtering system. FePt nanoparticles embedded in a C matrix were formed by consequently annealing. X-ray diffraction (XRD) results show the degree of atomic ordering of the L10 structure increases with higher temperature annealing. Room temperature magnetic measurements reveal that in-plane coercivity HC, and squareness Mr/MS depend on the thickness of carbon layer. Relatively High HC (3245.1Oe) and squareness (0.67) were obtained when the thickness of C layer is 2.0 nm. The carbon layer not only isolates the FePt grain, but also suppresses the growth of fct FePt grains. When the thickness of carbon layer is 2.0 nm, the FePt grain size decreases down to ~20 nm measured by Scan Probe Microscope (SPM). Interactions between particles can be tuned to near zero when we select the proper thickness of C layer.


1995 ◽  
Vol 403 ◽  
Author(s):  
Rama B. Inturi ◽  
John A. Barnard

AbstractTiB2, MoSi2, Si3N4 and Ta4N ceramic films were magnetron sputtered on oxidized Si and Coming 7059 glass substrates at ambient temperature. X-ray diffraction studies indicate that the structure of the films is very different on the two substrates, even though the surface of both substrates is amorphous. The hardness and elastic modulii of the films on oxidized Si are slightly higher than those of the films deposited on Coming glass substrate, even at indentation depths where substrate effects are considered to be negligible. A substantial increase in hardness (5–10 GPa) was observed for TiB2 films, when compared to the properties of bulk stoichiometric TiB2. Stress- temperature diagrams determined from room temperature to 250 C indicate that all the films prepared in this study display a pure elastic behavior in that temperature range.


2007 ◽  
Vol 534-536 ◽  
pp. 1077-1080 ◽  
Author(s):  
Junichi Matsushita ◽  
Kenji Shimao ◽  
Yoshiyuki Machida ◽  
Takumi Takao ◽  
Kiyokata Iizumi ◽  
...  

Several boride sintered bodies such as TiB2, ZrB2, and SiB6 were previously reported. In the present study, the sinterability and physical properties of chromium boride (CrB2) containing chromium carbide (Cr3C2) sintered bodies were investigated in order to determine its new advanced material. The samples were sintered at desired temperature for 1 hour in vacuum under a pressure by hot pressing. The relative density of sintered bodies was measured by Archimedes’ method. The relative densities of CrB2 addition of 0, 5, 10, 15 and 20 mass % Cr3C2 composites were 92 to 95 %. The Vickers hardness of the CrB2 with 10 and 15 mass % Cr3C2 composites were about 14 and 15 GPa at room temperature, respectively. The Vickers hardness at high temperature of the CrB2 addition of 10 mass % Cr3C2 composite decreased with increasing measurement temperature. The Vickers hardness at 1273 K of the sample was 6 GPa. The Vickers hardness of CrB2 addition of Cr3C2 composites was higher than monolithic CrB2 sintered body. The powder X-ray diffraction analysis detected CrB and B4C phases in CrB2 containing Cr3C2 composites.


2001 ◽  
Vol 7 (S2) ◽  
pp. 116-117
Author(s):  
J. Herbert Waite

many naturally occurring structures are, in fact, composite materials with functionally graded mechanical properties. in manufacturing, achieving such graded properties is critical when joining two materials of significantly different elastic moduli, thermal or electronic characteristics. One assumes that similar imperatives are at play in the profusion of biological examples of gradients. Two gradient biosystems, in particular, have been the focus of our attention: These are mussel byssal threads and polychaete jaws. Mussel byssal threads are composites consisting of anisotropically packed discontinuous fibers in an amorphous matrix all coated by a protective cuticle. The threads are produced by process resembling reaction injection molding and imparted with a longitudinal gradient of mechanical properties ranging from stiff and tough distally to extensible and rubbery proximally. Collagen is the principal tensile polymer as determined by fiber x-ray diffraction, however, the mechanical properties of typical tendon are poorly matched with those of byssal threads.


Sign in / Sign up

Export Citation Format

Share Document