Microstructures and Mechanical Properties of Ti-48Al-2Cr-2Nb-xW

2007 ◽  
Vol 561-565 ◽  
pp. 481-486 ◽  
Author(s):  
Dong Yi Seo ◽  
S. Bulmer ◽  
H. Saari ◽  
Peter Au

The microstructures and mechanical properties of three powder metallurgy Ti-48Al-2Cr- 2Nb-xW alloys (where x=0, 0.5, and 1 atomic percent (at.%)) are presented. The results indicate that a solution heat treatment combined with controlled cooling generate a fully lamellar (FL) microstructure without the formation of detrimental Widmanstätten or massively transformed γ phases. Aging causes coarsening of the FL microstructure in the alloys containing 0%W and 0.5%W, while almost no coarsening occurs in the 1%W sample. The addition of W to the base composition results in the formation of precipitates at the lamellar interfaces and grain boundaries during aging which helps stabilize the FL microstructure. The amount of W and the aging time affect the room temperature hardness values and tensile properties.

2016 ◽  
Vol 849 ◽  
pp. 570-579
Author(s):  
Qiang Huang ◽  
Jin Xia Song ◽  
Qing Li ◽  
Wei Peng Ren ◽  
Xin Guang Guan ◽  
...  

The microstructures and mechanical properties of superalloy K465 under different heat treatment, including as as-cast, solution treatment and aging, were investigated. The results showed that γ' precipitates in as-cast condition exhibited two kinds of morphologies of fine regular cuboidal shape at dendritic arm and coarse irregular form in interdendritic region. MC carbides decomposed into M6C carbides partly after 1210°C/4h solution treatment. The high temperature stress-rupture life can be improved obviously with the increasing cooling rate. When cooling rate was lower than 70°C/min, the room temperature tensile elongation increased with cooling rate increasing. When cooling rate was higher than 90°C/min the room temperature tensile elongation decreased with cooling rate increasing. The proper cooling rate of 70oC/min~90oC/min is advantageous for the achievement of excellent comprehensive properties. When aging treatments continued the regularization of γ' resulted in the improvement of stress-rupture life and the reduction of tensile elongation. The mechanical property gap between the solution treatment and aging can be decreased with increasing cooling rate.


2013 ◽  
Vol 690-693 ◽  
pp. 44-48
Author(s):  
Feng Wang ◽  
Zhi Wang ◽  
Zheng Liu ◽  
Ping Li Mao

In this paper, developed a non-aluminum die casting magnesium alloys were studied based on Mg-xGd-Y-Zr(x=6, 8, 12 wt.%)alloys in cold chamber press. The microstructures and mechanical properties of die casting GWK alloys have been investigated using OM, SEM, XRD, EDS and mechanical property test. The experimental results show that with increasing Gd content of Mg-xGd-Y-Zr alloys, the tensile strength increase, but elongation decrease. In particular, die casting GWK alloys after short-term and low-temperature solid solution treatment (T4) have a small variation in grain size and more uniform microstructures, and the second phases distribute at the grain boundaries in form of discontinuous rod shape or granule shape, which result in an obvious improvement in tensile mechanical properties of alloys. The Mg-12Gd-3Y-0.5Zr die casting alloy exhibit maximum tensile strength after solution heat treatment, and the value is 269MPa at room temperature. The effect of solution heat treatment on die casting Mg-xGd-Y-Zr alloys was also discussed.


Author(s):  
H. Saari ◽  
S. Bulmer ◽  
D. Y. Seo ◽  
P. Au

The microstructures and creep properties at 760 °C and 276 MPa of three powder metallurgy TiAl alloys (Ti-48Al-2Cr-2Nb, Ti-48Al-2Cr-2Nb+0.5W, and Ti-48Al-2Cr-2Nb+1W (atomic percent)) are presented. The results indicate that the addition of W to the base composition, the use of a solution heat treatment combined with controlled cooling (to generate a fully lamellar microstructure), and the use of an aging heat treatment (to generate precipitate particles at the lamellar interfaces) improve creep properties dramatically. The solution heat treated and aged Ti-48Al-2Cr-2Nb+1W alloy has a time to 0.5% strain of 8.3 hours, a time to 1% strain of 46.4 hours, and a creep life of 412 hours with a rupture ductility of 16.9%.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1672 ◽  
Author(s):  
Ning Cui ◽  
Qianqian Wu ◽  
Kexiao Bi ◽  
Tiewei Xu ◽  
Fantao Kong

The effect of heat treatment on the microstructures and mechanical properties of a novel β-solidifying Ti–43Al–2Cr–2Mn–0.2Y alloy was investigated. A fully lamellar (FL) microstructure with a colony size of about 100 μm was obtained by heat treatment at 1320 °C/10 min/furnace cooling (FC). A duplex (DP) microstructure with globular γ grains and γ/α2 lamellae was obtained by heat treatment at 1250 °C/4 h/FC. The residual hard–brittle β0 phase was also eliminated after heat treatment. The mechanical properties of the β-solidifying TiAl alloy depended closely on the heat treatment. The FL alloy had better fracture toughness, and the fracture toughness (KIC) value was 24.15 MPa·m1/2. The DP alloy exhibited better ductility, and the room temperature (RT) elongation of the alloy could reach 1%. The elongation of the alloy with different microstructures sharply increased when the temperature increased from 700 to 750 °C, indicating that the microstructure had no effect on the ductile–brittle transition temperature of the β-solidifying TiAl alloy. The fracture morphologies of different tensile specimens were observed. Interlamellar and translamellar fractures were the main fracture features of the FL alloy. Intergranular, translamellar, and interlamellar fractures were the main fracture features of the DP alloy.


2014 ◽  
Vol 788 ◽  
pp. 187-192 ◽  
Author(s):  
Lei Lu ◽  
Da Tong Zhang ◽  
Yuan Yuan Li

The effects of heat treatment on the microstructures and mechanical properties of a squeeze-casted Al-6.8%Zn-2.7%Mg-2.0%Cu alloy were studied by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It is found that squeeze casting can refine the microstructure of the alloy markedly accelerates the diffusion process of solute atoms during solution heat treatment. After solution heat treatment at 470°C for 10h and artificial aging at 130°C for 24h, the tensile strength and the elongation of the squeeze-casted alloy reach 590MPa and 5.0%, respectively, which are almost equal to those of the wrought alloy, and are significantly higher than those of the gravity-casted alloy (435MPa and 1.3%). Based on the experimental results, the mechanism of microstructural evolution and the effect of squeeze casting on the kinetics of solute diffusion and aging precipitation of the squeeze-casted Al-Zn-Mg-Cu alloy were discussed.


2019 ◽  
Vol 11 (0) ◽  
pp. 1-5
Author(s):  
Hanae Chabba ◽  
Irmantas Gedzevičius ◽  
Valentinas Varnauskas ◽  
Driss Dafir ◽  
Fouzi Belmir

This study aims to understand the influence of heat treatment on behavior of AA6061 aluminum alloy at room temperature for various heat treatment. Two experimental parameters for this alloy are defined: micro hardness and the electrical resistivity, as a function of heat treatment at ambient temperature. The results show that the heat treatment conditions have an effective influence in mechanical properties of Al-Mg-Si aluminum alloy. This variation of the mechanical properties is the result of microstructural changes which have been observed using optical microscopy. When the material is subjected to a solution heat treatment followed by quenching and artificial aging, its mechanical properties, especially micro hardness and electrical resistivity, reach their highest levels and become very good compared to the other heat treatment applied to the same alloy.


2020 ◽  
Vol 58 (7) ◽  
pp. 459-465
Author(s):  
Jong-hun Kim ◽  
Jae-Kwon Kim ◽  
Seong-Woong Kim ◽  
Yong-Ho Park ◽  
Seung Eon Kim

The microstructure and mechanical properties of a newly developed, β-phase containing TiAl alloy have been studied through hot working and post heat treatment to enhance room temperature ductility and strength. The controlled microstructures hadthree types of structure, fully lamellar, nearly lamellar and duplex, and were produced by cyclic heat-treatment in a single α region and (α+γ) region after a hot-forging process in high temperature (α+β) region. As a result of the room temperature tensile test, the fully lamellar structure exhibited a tensile strength of 622 MPa and ductility of 0.62%. The duplex structure had a tensile strength of 787 MPa and ductility of 1.22%, while the nearly lamellar structure showed a tensile strength of 880 MPa and ductility of 1.76%. In the room temperature tensile test, the nearly lamellar structure exhibited excellent tensile strength and ductility. The strength and ductility were increased by decreasing grain size and β / B2 phase fraction. The newly developed TiAl alloy showed higher tensile values compared with the previous TiAl alloys. The relationship between microstructure and room temperature tensile properties of the newly developed β-phase containing TiAl alloy was examined, and the best approach for hot working and post heat-treatment to obtain the most balanced mechanical properties was proposed.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


Sign in / Sign up

Export Citation Format

Share Document